Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Derrick Broka is active.

Publication


Featured researches published by Derrick Broka.


Circulation Research | 2006

Depolymerized Hyaluronan Induces Vascular Endothelial Growth Factor, a Negative Regulator of Developmental Epithelial-to-Mesenchymal Transformation

Laurel S. Rodgers; Sofia Lalani; Katharine M. Hardy; Xueyu Xiang; Derrick Broka; Parker B. Antin; Todd D. Camenisch

Cardiac malformations constitute the most common birth defects, of which heart septal and valve defects are the most frequent forms diagnosed in infancy. These cardiac structures arise from the endocardial cushions through dynamic interactions between cells and the extracellular matrix (cardiac jelly). Targeted deletion of the hyaluronan synthase-2 (Has2) gene in mice results in an absence of hyaluronan (HA), cardiac jelly, and endocardial cushions, a loss of vascular integrity, and death at embryonic day 9.5. Despite the requirements for Has2 and its product, HA, in the developing heart, little is known about the normal processing and removal of HA during development. Cell culture studies show that HA obtains new bioactivity after depolymerization into small oligosaccharides. We previously showed reduction in Has2 expression and diminished presence of HA at later stages of heart development as tissue remodeling formed the leaflets of the cardiac valves. Here we show that small oligosaccharide forms of HA (o-HA) act antagonistically to developmental epithelial-to-mesenchymal transformation (EMT), which is required to generate the progenitor cells that populate the endocardial cushions. We further show that o-HA induces vascular endothelial growth factor (VEGF), which acts as a negative regulator of EMT. This is the first report illustrating a functional link between oligosaccharide HA and VEGF. Collectively, our data indicate that following endocardial cell EMT, native HA is likely processed to o-HA, which stimulates VEGF activity to attenuate cardiac developmental EMT.


Circulation Research | 2008

MEKK3 Initiates Transforming Growth Factor β2–Dependent Epithelial-to-Mesenchymal Transition During Endocardial Cushion Morphogenesis

Mark V. Stevens; Derrick Broka; Patti Parker; Elisa Rogowitz; Richard R. Vaillancourt; Todd D. Camenisch

Congenital heart defects occur at a rate of 5% and are the most prevalent birth defects. A better understanding of the complex signaling networks regulating heart development is necessary to improve repair strategies for congenital heart defects. The mitogen-activated protein 3 kinase (MEKK3) is important to early embryogenesis, but developmental processes affected by MEKK3 during heart morphogenesis have not been fully examined. We identify MEKK3 as a critical signaling molecule during endocardial cushion development. We report the detection of MEKK3 transcripts to embryonic hearts before, during, and after cardiac cushion cells have executed epithelial-to-mesenchymal transition (EMT). MEKK3 is observed to endocardial cells of the cardiac cushions with a diminishing gradient of expression into the cushions. These observations suggest that MEKK3 may function during production of cushion mesenchyme as required for valvular development and septation of the heart. We used a kinase inactive form of MEKK3 (MEKK3KI) in an in vitro assay that recapitulates in vivo EMT and show that MEKK3KI attenuates mesenchyme formation. Conversely, constitutively active MEKK3 (ca-MEKK3) triggers mesenchyme production in ventricular endocardium, a tissue that does not normally undergo EMT. MEKK3-driven mesenchyme production is further substantiated by increased expression of EMT-relevant genes, including TGF&bgr;2, Has2, and periostin. Furthermore, we show that MEKK3 stimulates EMT via a TGF&bgr;2-dependent mechanism. Thus, the activity of MEKK3 is sufficient for developmental EMT in the heart. This knowledge provides a basis to understand how MEKK3 integrates signaling cascades activating endocardial cushion EMT.


Toxicologic Pathology | 2012

Chronic Low-Level Arsenite Exposure through Drinking Water Increases Blood Pressure and Promotes Concentric Left Ventricular Hypertrophy in Female Mice

Pablo Sanchez-Soria; Derrick Broka; Sarah L. Monks; Todd D. Camenisch

Cardiovascular disease is the leading cause of death in the United States and worldwide. High incidence of cardiovascular diseases has been linked to populations with elevated arsenic content in their drinking water. Although this correlation has been established in many epidemiological studies, a lack of experimental models to study mechanisms of arsenic-related cardiovascular pathogenesis has limited our understanding of how arsenic exposure predisposes for development of hypertension and increased cardiovascular mortality. Our studies show that mice chronically exposed to drinking water containing 100 parts per billion (ppb) sodium arsenite for 22 weeks show an increase in both systolic and diastolic blood pressure. Echocardiographic analyses as well as histological assessment show concentric left ventricular hypertrophy, a primary cardiac manifestation of chronic hypertension. Live imaging by echocardiography shows a 43% increase in left ventricular mass in arsenic-treated animals. Relative wall thickness (RWT) was calculated showing that all the arsenic-exposed animals show an RWT greater than 0.45, indicating concentric hypertrophy. Importantly, left ventricular hypertrophy, although often associated with chronic hypertension, is an independent risk factor for cardiovascular-related mortalities. These results suggest that chronic low-level arsenite exposure promotes the development of hypertension and the comorbidity of concentric hypertrophy.


Toxicological Sciences | 2010

Arsenic Exposure Perturbs Epithelial-Mesenchymal Cell Transition and Gene Expression In a Collagen Gel Assay

Alejandro Lencinas; Derrick Broka; Jay H. Konieczka; Scott E. Klewer; Parker B. Antin; Todd D. Camenisch; Raymond B. Runyan

Arsenic is a naturally occurring metalloid and environmental contaminant. Arsenic exposure in drinking water is reported to cause cancer of the liver, kidneys, lung, bladder, and skin as well as birth defects, including neural tube, facial, and vasculogenic defects. The early embryonic period most sensitive to arsenic includes a variety of cellular processes. One key cellular process is epithelial-mesenchymal transition (EMT) where epithelial sheets develop into three-dimensional structures. An embryonic prototype of EMT is found in the atrioventricular (AV) canal of the developing heart, where endothelia differentiate to form heart valves. Effects of arsenic on this cellular process were examined by collagen gel invasion assay (EMT assay) using explanted AV canals from chicken embryo hearts. AV canals treated with 12.5-500 ppb arsenic showed a loss of mesenchyme at 12.5 ppb, and mesenchyme formation was completely inhibited at 500 ppb. Altered gene expression in arsenic-treated explants was investigated by microarray analysis. Genes whose expression was altered consistently at exposure levels of 10, 25, and 100 ppb were identified, and results showed that 25 ppb in vitro was particularly effective. Three hundred and eighty two genes were significantly altered at this exposure level. Cytoscape analysis of the microarray data using the chicken interactome identified four clusters of altered genes based on published relationships and pathways. This analysis identified cytoskeleton and cell adhesion-related genes whose disruption is consistent with an altered ability to undergo EMT. These studies show that EMT is sensitive to arsenic and that an interactome-based approach can be useful in identifying targets.


Journal of Toxicology and Health | 2014

Fetal exposure to arsenic results in hyperglycemia, hypercholesterolemia, and nonalcoholic fatty liver disease in adult mice

Pablo Sanchez-Soria; Derrick Broka; Stephanie Quach; Rhiannon N. Hardwick; Nathan J. Cherrington; Todd D. Camenisch

Abstract Background: Exposure to arsenic is a major concern in the United States and worldwide, since this metalloid has been associated with a number of ailments, including cardiovascular and metabolic diseases.


Toxicology and Applied Pharmacology | 2013

Disruption of canonical TGFβ-signaling in murine coronary progenitor cells by low level arsenic

Patrick Allison; Tianfang Huang; Derrick Broka; Patti Parker; Joey V. Barnett; Todd D. Camenisch

Exposure to arsenic results in several types of cancers as well as heart disease. A major contributor to ischemic heart pathologies is coronary artery disease, however the influences by environmental arsenic in this disease process are not known. Similarly, the impact of toxicants on blood vessel formation and function during development has not been studied. During embryogenesis, the epicardium undergoes proliferation, migration, and differentiation into several cardiac cell types including smooth muscle cells which contribute to the coronary vessels. The TGFβ family of ligands and receptors is essential for developmental cardiac epithelial to mesenchymal transition (EMT) and differentiation into coronary smooth muscle cells. In this in vitro study, 18hour exposure to 1.34μM arsenite disrupted developmental EMT programming in murine epicardial cells causing a deficit in cardiac mesenchyme. The expression of EMT genes including TGFβ2, TGFβ receptor-3, Snail, and Has-2 are decreased in a dose-dependent manner following exposure to arsenite. TGFβ2 cell signaling is abrogated as detected by decreases in phosphorylated Smad2/3 when cells are exposed to 1.34μM arsenite. There is also loss of nuclear accumulation pSmad due to arsenite exposure. These observations coincide with a decrease in vimentin positive mesenchymal cells invading three-dimensional collagen gels. However, arsenite does not block TGFβ2 mediated smooth muscle cell differentiation by epicardial cells. Overall these results show that arsenic exposure blocks developmental EMT gene programming in murine coronary progenitor cells by disrupting TGFβ2 signals and Smad activation, and that smooth muscle cell differentiation is refractory to this arsenic toxicity.


Cytotechnology | 2009

An improved protocol for the isolation and cultivation of embryonic mouse myocytes.

Laurel S. Rodgers; Daniel C. Schnurr; Derrick Broka; Todd D. Camenisch

In vitro cultures of cardiomyocytes have proven to be a useful tool for toxicological, pharmacological, and developmental studies, as well as for the study of the cellular and molecular mechanisms responsible for proper myocyte function. One deficient area of research is that of myocyte proliferation. Cardiomyocyte proliferation dramatically diminishes soon after birth and has a very limited occurrence within the adult heart, thus limiting the use of adult cells for proliferation studies. An improved understanding of the requirements for myocyte proliferation will allow for the development of better approaches to repair damaged heart tissue. Here, we provide a protocol for the reliable isolation of embryonic mouse myocytes. These myocytes behave similarly to those in vivo, including their ability to proliferate, providing an ideal system for the study of cardiomyocyte proliferation.


Molecular Cancer Research | 2012

MUC1 Drives c-Met–Dependent Migration and Scattering

Teresa M. Horm; Benjamin G. Bitler; Derrick Broka; Jeanne M.V. Louderbough; Joyce A. Schroeder

The transmembrane mucin MUC1 is overexpressed in most ductal carcinomas, and its overexpression is frequently associated with metastatic progression. MUC1 can drive tumor initiation and progression via interactions with many oncogenic partners, including β-catenin, the EGF receptor (EGFR) and Src. The decoy peptide protein transduction domain MUC1 inhibitory peptide (PMIP) has been shown to inhibit the tumor promoting activities of MUC1 in breast and lung cancer, including cell growth and invasion, and its usage suppresses metastatic progression in mouse models of breast cancer. To further characterize the reduced metastasis observed upon PMIP treatment, we conducted motility assays and observed that PMIP inhibits cell motility of breast cancer cells. To determine the mechanism by which PMIP inhibits motility, we evaluated changes in global gene transcription upon PMIP treatment, and identified a number of genes with altered expression in response to PMIP. Among these genes is the metastatic mediator, c-Met, a transmembrane tyrosine kinase that can promote cell scattering, migration, and invasion. To further investigate the role of c-Met in MUC1-dependent metastatic events, we evaluated the effects of MUC1 expression and EGFR activation on breast cancer cell scattering, branching, and migration. We found that MUC1 strongly promoted all of these events and this effect was further amplified by EGF treatment. Importantly, the effect of MUC1 and EGF on these phenotypes was dependent upon c-Met activity. Overall, these results indicate that PMIP can block the expression of a key metastatic mediator, further advancing its potential use as a clinical therapeutic. Mol Cancer Res; 10(12); 1544–54. ©2012 AACR.


Molecular Therapy | 2013

Inactive ERBB Receptors Cooperate With Reactive Oxygen Species To Suppress Cancer Progression

Matthew R. Hart; Hsin Yuan Su; Derrick Broka; Aarthi Goverdhan; Joyce A. Schroeder

The ERBB receptors are a family of heterodimerization partners capable of driving transformation and metastasis. While the therapeutic targeting of single receptors has proven efficacious, optimal targeting of this receptor family should target all oncogenic members simultaneously. The juxtamembrane domains of ERBB1, ERBB2, and ERBB3 are highly conserved and control various aspects of ERBB-dependent biology. In an effort to block those functions, we have targeted this domain with decoy peptides synthesized in tandem with a cell-penetrating peptide, termed EJ1. Treatment with EJ1 induces cell death, promotes the formation of inactive ERBB multimers, and results in simultaneous reduction of ERBB1, ERBB2, and ERBB3 activation. Treatment also results in the activation of myosin light chain-dependent cell blebbing while inactivating CaMKII signaling, coincident with the induction of cell death. EJ1 also directly translocates to mitochondria, correlating with a loss of mitochondrial membrane potential and production of reactive oxygen species. Finally, treatment of a mouse model of breast cancer with EJ1 results in the inhibition of tumor growth and metastasis without associated toxicities in normal cells. Overall, these data demonstrate that a portion of the ERBB jxm domain, when used as an intracellular decoy, can inhibit tumor growth and metastasis, representing a novel anticancer therapeutic.


Oncotarget | 2017

Intravesicular epidermal growth factor receptor subject to retrograde trafficking drives epidermal growth factor-dependent migration

Sabrina Maisel; Derrick Broka; Joyce A. Schroeder

The Epidermal Growth Factor Receptor (EGFR) is frequently mutated and overexpressed in metastatic cancer. Although EGFR is a transmembrane tyrosine kinase localized to the basolateral membrane in normal epithelium, it is frequently found intracellularly localized in transformed cells. We have previously demonstrated the epithelial adaptor protein mucin 1 (MUC1) alters trafficking of EGFR, inhibiting its degradation and promoting its translocation to the nucleus, where it can directly modulate gene transcription. Here, we demonstrate that MUC1 promotes the retention of EGF-bound EGFR in Early Endosome Antigen1 (EEA1)-positive vesicles while preventing its trafficking to the lysosome. These events result in the accumulation of endosomal vesicles harboring active receptor throughout the cell and a reorganization of the actin cytoskeleton. EGF-dependent cell migration and filopodia formation is reliant upon this altered trafficking, and can be prevented by blocking retrograde trafficking. Together, these results indicate that intracellular EGFR may play an essential role in cancer metastasis and a potential mechanism for the failure of therapeutic antibodies in EGFR-driven metastatic breast cancer.

Collaboration


Dive into the Derrick Broka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge