Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Derrick R Guy is active.

Publication


Featured researches published by Derrick R Guy.


Genetics | 2008

Major quantitative trait loci affect resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar).

Ross Houston; Chris Haley; Alastair Hamilton; Derrick R Guy; A. E. Tinch; John B. Taggart; Brendan McAndrew; Stephen Bishop

Infectious pancreatic necrosis (IPN) is a viral disease currently presenting a major problem in the production of Atlantic salmon (Salmon salar). IPN can cause significant mortality to salmon fry within freshwater hatcheries and to smolts following transfer to seawater, although challenged populations show clear genetic variation in resistance. To determine whether this genetic variation includes loci of major effect, a genomewide quantitative trait loci (QTL) scan was performed within 10 full-sib families that had received a natural seawater IPN challenge. To utilize the large difference between Atlantic salmon male and female recombination rates, a two-stage mapping strategy was employed. Initially, a sire-based QTL analysis was used to detect linkage groups with significant effects on IPN resistance, using two to three microsatellite markers per linkage group. A dam-based analysis with additional markers was then used to confirm and position any detected QTL. Two genomewide significant QTL and one suggestive QTL were detected in the genome scan. The most significant QTL was mapped to linkage group 21 and was significant at the genomewide level in both the sire and the dam-based analyses. The identified QTL can be applied in marker-assisted selection programs to improve the resistance of salmon to IPN and reduce disease-related mortality.


Heredity | 2010

The susceptibility of Atlantic salmon fry to freshwater infectious pancreatic necrosis is largely explained by a major QTL

Ross Houston; Chris Haley; Alastair Hamilton; Derrick R Guy; J. C. Mota-Velasco; Almas Gheyas; A. E. Tinch; John B. Taggart; James E. Bron; William G. Starkey; Brendan McAndrew; David W. Verner-Jeffreys; Richard Paley; Georgina S. E. Rimmer; I. Tew; S. C. Bishop

Infectious pancreatic necrosis (IPN) is a viral disease with a significant negative impact on the global aquaculture of Atlantic salmon. IPN outbreaks can occur during specific windows of both the freshwater and seawater stages of the salmon life cycle. Previous research has shown that a proportion of the variation seen in resistance to IPN is because of host genetics, and we have shown that major quantitative trait loci (QTL) affect IPN resistance at the seawater stage of production. In the current study, we completed a large freshwater IPN challenge experiment to allow us to undertake a thorough investigation of the genetic basis of resistance to IPN in salmon fry, with a focus on previously identified QTL regions. The heritability of freshwater IPN resistance was estimated to be 0.26 on the observed scale and 0.55 on the underlying scale. Our results suggest that a single QTL on linkage group 21 explains almost all the genetic variation in IPN mortality under our experimental conditions. A striking contrast in mortality is seen between fry classified as homozygous susceptible versus homozygous resistant, with QTL-resistant fish showing virtually complete resistance to IPN mortality. The findings highlight the importance of the major QTL in the genetic regulation of IPN resistance across distinct physiological lifecycle stages, environmental conditions and viral isolates. These results have clear scientific and practical implications for the control of IPN.


BMC Genomics | 2012

Characterisation of QTL-linked and genome-wide restriction site-associated DNA (RAD) markers in farmed Atlantic salmon.

Ross Houston; John W. Davey; Stephen Bishop; Natalie R. Lowe; J. C. Mota-Velasco; Alastair Hamilton; Derrick R Guy; A. E. Tinch; Marian Thomson; Mark Blaxter; Karim Gharbi; James E. Bron; John B. Taggart

BackgroundRestriction site-associated DNA sequencing (RAD-Seq) is a genome complexity reduction technique that facilitates large-scale marker discovery and genotyping by sequencing. Recent applications of RAD-Seq have included linkage and QTL mapping with a particular focus on non-model species. In the current study, we have applied RAD-Seq to two Atlantic salmon families from a commercial breeding program. The offspring from these families were classified into resistant or susceptible based on survival/mortality in an Infectious Pancreatic Necrosis (IPN) challenge experiment, and putative homozygous resistant or susceptible genotype at a major IPN-resistance QTL. From each family, the genomic DNA of the two heterozygous parents and seven offspring of each IPN phenotype and genotype was digested with the SbfI enzyme and sequenced in multiplexed pools.ResultsSequence was obtained from approximately 70,000 RAD loci in both families and a filtered set of 6,712 segregating SNPs were identified. Analyses of genome-wide RAD marker segregation patterns in the two families suggested SNP discovery on all 29 Atlantic salmon chromosome pairs, and highlighted the dearth of male recombination. The use of pedigreed samples allowed us to distinguish segregating SNPs from putative paralogous sequence variants resulting from the relatively recent genome duplication of salmonid species. Of the segregating SNPs, 50 were linked to the QTL. A subset of these QTL-linked SNPs were converted to a high-throughput assay and genotyped across large commercial populations of IPNV-challenged salmon fry. Several SNPs showed highly significant linkage and association with resistance to IPN, and population linkage-disequilibrium-based SNP tests for resistance were identified.ConclusionsWe used RAD-Seq to successfully identify and characterise high-density genetic markers in pedigreed aquaculture Atlantic salmon. These results underline the effectiveness of RAD-Seq as a tool for rapid and efficient generation of QTL-targeted and genome-wide marker data in a large complex genome, and its possible utility in farmed animal selection programs.


Comparative Biochemistry and Physiology Part D: Genomics and Proteomics | 2011

Heritability and mechanisms of n-3 long chain polyunsaturated fatty acid deposition in the flesh of Atlantic salmon.

Michael J. Leaver; John B. Taggart; Laure Villeneuve; James E. Bron; Derrick R Guy; Stephen Bishop; Ross Houston; Oswald Matika; Douglas R. Tocher

n-3 long chain polyunsaturated fatty acids (n-3LC-PUFA) are essential components of vertebrate membrane lipids and are now at critically low levels in modern Western diets. The main human dietary source for n-3LC-PUFA is fish and seafood, and over 50% of global fish production is currently supplied by aquaculture. However, increasing pressure to include vegetable oils, which are devoid of n-3LC-PUFA, in aquaculture feeds reduces their content in farmed fish flesh. The aim of this study was to measure the heritability and infer mechanisms determining flesh n-3LC-PUFA content in Atlantic salmon. This was achieved by analysing flesh lipid parameters in 48 families of Atlantic salmon and by measuring differences, by high density microarray, in hepatic mRNA expression in families with high and low flesh n-3LC-PUFA. The results show that flesh n-3LC-PUFA composition is a highly heritable trait (h²=0.77±0.14). Gene ontology analysis of differentially expressed genes indicates increased hepatic lipid transport, likely as very low density lipoprotein (VLDL), and implicates family differences in transforming growth factor β1 (Tgfβ1) signalling, activities of a transcription factor Snai1, and considered together may indicate alterations in hepatic nuclear factor 4α (HNF4α), a master controller of lipid homeostasis. This study paves the way for identification of quantitative trait loci and gene interaction networks that are associated with flesh n-3LC-PUFA composition, which will assist the sustainable production of Atlantic salmon and provide optimal levels of critical nutrients for human consumers.


British Journal of Nutrition | 2011

Diet × genotype interactions in hepatic cholesterol and lipoprotein metabolism in Atlantic salmon ( Salmo salar ) in response to replacement of dietary fish oil with vegetable oil

Sofia Morais; Jarunan Pratoomyot; Bente E. Torstensen; John B. Taggart; Derrick R Guy; J. Gordon Bell; Douglas R. Tocher

The present study investigates the effects of genotype on responses to alternative feeds in Atlantic salmon. Microarray analysis of the liver transcriptome of two family groups, lean or fat, fed a diet containing either a fish oil (FO) or a vegetable oil (VO) blend indicated that pathways of cholesterol and lipoprotein metabolism might be differentially affected by the diet depending on the genetic background of the fish, and this was further investigated by real-time quantitative PCR, plasma and lipoprotein biochemical analysis. Results indicate a reduction in VLDL and LDL levels, with no changes in HDL, when FO is replaced by VO in the lean family group, whereas in fat fish fed FO, levels of apoB-containing lipoproteins were low and comparable with those fed VO in both family groups. Significantly lower levels of plasma TAG and LDL-TAG were measured in the fat group that was independent of diet, whereas plasma cholesterol was significantly higher in fish fed the FO diet in both groups. Hepatic expression of genes involved in cholesterol homeostasis, β-oxidation and lipoprotein metabolism showed relatively subtle changes. A significantly lower expression of genes considered anti-atherogenic in mammals (ATP-binding cassette transporter A1, apoAI, scavenger receptor class B type 1, lipoprotein lipase (LPL)b (TC67836) and LPLc (TC84899)) was found in lean fish, compared with fat fish, when fed VO. Furthermore, the lean family group appeared to show a greater response to diet composition in the cholesterol biosynthesis pathway, mediated by sterol-responsive element-binding protein 2. Finally, the presence of three different transcripts for LPL, with differential patterns of nutritional regulation, was demonstrated.


Animal Genetics | 2009

Detection of QTL affecting harvest traits in a commercial Atlantic salmon population

Ross Houston; Stephen Bishop; Alastair Hamilton; Derrick R Guy; A. E. Tinch; John B. Taggart; A. Derayat; Brendan McAndrew; Chris Haley

Genetic variation in performance and quality traits measured at harvest has previously been demonstrated in Atlantic salmon aquaculture populations. To map major loci underlying this variation, we utilized data from 10 families from a commercial breeding programme. Significant QTL were detected affecting harvest weight and length traits on linkage group 1, and affecting waste weight on linkage group 5. In total, 11 of the 29 linkage groups examined showed at least suggestive evidence for a QTL. These data suggest that major loci affecting economically important harvest characteristics are segregating in commercial salmon populations.


Animal Genetics | 2010

Segregation of infectious pancreatic necrosis resistance QTL in the early life cycle of Atlantic Salmon (Salmo salar)

Almas Gheyas; Ross Houston; J. C. Mota-Velasco; Derrick R Guy; A. E. Tinch; Chris Haley; John Woolliams

In a previous study, three significant quantitative trait loci (QTL) associated with resistance to Infectious Pancreatic Necrosis (IPN) disease were identified by analysing challenge data from one sub-population of Landcatch Atlantic salmon (Salmo salar) smolt. While these QTL were shown to affect the resistance in seawater, their effect in freshwater was unknown. This study investigates the effect of these QTL on IPN resistance in salmon fry in freshwater. Twenty families with intermediate levels of IPN mortality were analysed from a freshwater challenge trial undertaken on a different sup-population of LNS salmon to that studied previously. Only the QTL from linkage group 21 (LG21) appeared to have a significant and large effect on resistance in freshwater; the same QTL was found to have the largest effect in seawater in the previous study. Variance component analysis showed a high heritability for the QTL: 0.45±0.07 on the liability scale and 0.25±0.05 on the observed scale. In a family where both parents were segregating for the QTL, there was a 0% vs. 100% mortality in homozygous offspring for resistant and susceptible QTL alleles. The finding that the same QTL has major effect in both freshwater and seawater has important practical implications, as this will allow the improvement of resistance in both phases through marker assisted selection by targeting this QTL. Moreover, the segregation of the LG21 QTL in a different sub-population gives further evidence of its association with IPN-resistance.


Animal Genetics | 2014

Single nucleotide polymorphisms in the insulin-like growth factor 1 (IGF1) gene are associated with growth-related traits in farmed Atlantic salmon.

Hsin-Yuan Tsai; Alastair Hamilton; Derrick R Guy; Ross Houston

Understanding the genetic basis of variation in traits related to growth and fillet quality in Atlantic salmon is of importance to the aquaculture industry. Several growth-related QTL have been identified via the application of genetic markers. The IGF1 gene is considered a highly conserved and crucial growth-regulating gene in salmonid species. However, the association between polymorphisms in the IGF1 gene and growth-related traits in Atlantic salmon is unknown. Therefore, in this study, regions of the Atlantic salmon IGF1 gene were sequenced, aligned and compared across individuals. Three SNPs were identified in the putative promoter (SNP1, g.5763G>T; GenBank no. AGKD01012745), intron 1 (SNP2, g.7292C>T; GenBank no. AGKD01012745) and intron 3 (SNP3, g.4671A>C; GenBank no. AGKD01133398) regions respectively. These SNPs were genotyped in a population of 4800 commercial Atlantic salmon with data on several weight and fillet traits measured at harvest (at approximately 3 years of age). In a mixed model, association analysis of individual SNPs, SNP1 and SNP3 were both significantly associated with several weight traits (P < 0.05). The estimated additive effect on overall harvest weight was approximately 35 and 110 g for SNPs 1 and 3 respectively. A haplotype analysis confirmed the association between genetic variation in the IGF1 gene with overall body weight (P < 0.05) and fillet component traits (P < 0.05). Our findings suggest the identified nucleotide polymorphisms of the IGF1 gene may either affect farmed Atlantic salmon growth directly or be in population-wide linkage disequilibrium with causal variation, highlighting their possible utility as candidates for marker-assisted selection in the aquaculture industry.


International Journal of Molecular Sciences | 2015

Verification of SNPs Associated with Growth Traits in Two Populations of Farmed Atlantic Salmon

Hsin Y. Tsai; Alastair Hamilton; Derrick R Guy; A. E. Tinch; S. C. Bishop; Ross Houston

Understanding the relationship between genetic variants and traits of economic importance in aquaculture species is pertinent to selective breeding programmes. High-throughput sequencing technologies have enabled the discovery of large numbers of SNPs in Atlantic salmon, and high density SNP arrays now exist. A previous genome-wide association study (GWAS) using a high density SNP array (132K SNPs) has revealed the polygenic nature of early growth traits in salmon, but has also identified candidate SNPs showing suggestive associations with these traits. The aim of this study was to test the association of the candidate growth-associated SNPs in a separate population of farmed Atlantic salmon to verify their effects. Identifying SNP-trait associations in two populations provides evidence that the associations are true and robust. Using a large cohort (N = 1152), we successfully genotyped eight candidate SNPs from the previous GWAS, two of which were significantly associated with several growth and fillet traits measured at harvest. The genes proximal to these SNPs were identified by alignment to the salmon reference genome and are discussed in the context of their potential role in underpinning genetic variation in salmon growth.


BMC Genomics | 2012

Hepatic transcriptome analysis of inter-family variability in flesh n-3 long-chain polyunsaturated fatty acid content in Atlantic salmon.

Sofia Morais; John B. Taggart; Derrick R Guy; J. Gordon Bell; Douglas R. Tocher

BackgroundGenetic selection of Atlantic salmon families better adapted to alternative feed formulations containing high levels of vegetable ingredients has been suggested to ensure sustainable growth of aquaculture. The present study aimed to identify molecular pathways that could underlie phenotypic differences in flesh n-3 long-chain polyunsaturated fatty acid (LC-PUFA) levels when fish are fed vegetable oil diets. Liver transcriptome was analyzed and compared in four families presenting higher or lower n-3 LC-PUFA contents at two contrasting flesh total lipid levels.ResultsThe main effect of n-3 LC-PUFA contents was in the expression of immune response genes (38% of all significantly affected genes), broadly implicated in the modulation of inflammatory processes and innate immune response. Although genetic evaluations of traits used in the breeding program revealed that the chosen families were not balanced for viral disease resistance, this did not fully explain the preponderance of immune response genes in the transcriptomic analysis. Employing stringent statistical analysis no lipid metabolism genes were detected as being significantly altered in liver when comparing families with high and low n-3 LC-PUFA flesh contents. However, relaxing the statistical analysis enabled identification of potentially relevant effects, further studied by RT-qPCR, in cholesterol biosynthesis, lipoprotein metabolism and lipid transport, as well as eicosanoid metabolism particularly affecting the lipoxygenase pathway. Total lipid level in flesh also showed an important effect on immune response and 8% of significantly affected genes related to lipid metabolism, including a fatty acyl elongase (elovl2), an acyl carrier protein and stearoyl-CoA desaturase.ConclusionsInter-family differences in n-3 LC-PUFA content could not be related to effects on lipid metabolism, including transcriptional modulation of the LC-PUFA biosynthesis pathway. An association was found between flesh adiposity and n-3 LC-PUFA in regulation of cholesterol biosynthesis, which was most likely explained by variation in tissue n-3 LC-PUFA levels regulating transcription of cholesterol metabolism genes through srebp2. A preponderance of immune response genes significantly affected by n-3 LC-PUFA contents could be potentially associated with disease resistance, possibly involving anti-inflammatory actions of tissue n-3 LC-PUFA through eicosanoid metabolism. This association may have been fortuitous, but it is important to clarify if this trait is included in future salmon breeding programmes.

Collaboration


Dive into the Derrick R Guy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ross Houston

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. E. Tinch

University of Stirling

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Haley

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Almas Gheyas

University of Edinburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge