Deshetti Jampaiah
RMIT University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Deshetti Jampaiah.
RSC Advances | 2015
Deshetti Jampaiah; Katie M. Tur; Perala Venkataswamy; Samuel J. Ippolito; Ylias M. Sabri; James Tardio; Suresh K. Bhargava; Benjaram M. Reddy
A nanostructured CeO2–MnOx catalyst was synthesized by a coprecipitation method and subjected to different calcination temperatures at 773 and 1073 K to understand the surface structure and the thermal stability. The structural and redox properties were deeply investigated by various techniques, namely, X-ray diffraction (XRD), inductively coupled plasma-optical emission spectroscopy (ICP-OES), Brunauer–Emmett–Teller (BET) surface area, transmission electron microscopy (TEM), Raman spectroscopy (RS), hydrogen-temperature programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS). The CeO2–MnOx catalyst calcined at 773 K was tested towards elemental mercury (Hg0) oxidation and the achieved results are compared with the pure CeO2 and MnOx. The XRD and TEM results confirmed the incorporation of Mn ions into the ceria lattice and the formation of a nanostructured solid solution, respectively. The RS and TPR results showed that the CeO2–MnOx catalyst exhibits more oxygen vacancies with superior redox ability over CeO2 and MnOx. XPS analysis indicates that Ce and Mn existed in multiple oxidation states. Compared to pure CeO2 and MnOx, the CeO2–MnOx catalyst exhibited greater Hg0 oxidation efficiency (Eoxi) of 11.7, 33.5, and 89.6% in the presence of HCl, O2, and HCl/O2-mix conditions, respectively. The results clearly indicated that the HCl/O2-mix had a promotional effect on the catalytic Hg0 oxidation. This was most likely due to the presence of surface oxygen species and oxygen vacancies being generated by a synergetic effect between CeO2 and MnOx. In the presence of HCl, the CeO2–MnOx catalyst exhibited good adsorption efficiency (Eads) of 92.4% over pure CeO2 (46.5%) and MnOx (80.6%). It was found that increasing the operating temperature from 423 to 573 K resulted in considerable increase of Eoxi and a decrease in the sorption of Hg0 on the catalyst.
Catalysis Science & Technology | 2016
Deshetti Jampaiah; Samuel J. Ippolito; Ylias M. Sabri; James Tardio; Periasamy R. Selvakannan; Ayman Nafady; Benjaram M. Reddy; Suresh K. Bhargava
A series of MnOx/CeO2 (Mn/Ce), MnOx/ZrO2 (Mn/Zr), and MnOx/Ce0.75Zr0.25O2 (Mn/CZ) catalysts prepared by an impregnation method were tested for their ability to catalyse the oxidation of Hg0 at relatively low temperature (423 K). Various characterization techniques, namely, Brunauer–Emmett–Teller (BET) surface area analysis, X-ray diffraction (XRD), Raman spectroscopy (RS), X-ray photoelectron spectroscopy (XPS), and H2-temperature programmed reduction (H2-TPR) were employed to understand the structural, surface, and redox properties of the prepared catalysts. Specific aspects of the catalysis of Hg0 oxidation that were investigated included the influence of MnOx loading (5, 15, and 25%) and the influence of HCl and O2. Among the catalysts tested, the 15Mn/CZ catalyst achieved the best Hg0 oxidation performance (~83% conversion of Hg0 to Hg2+) in the presence of HCl and O2. The higher activity of the 15Mn/CZ catalyst was most likely due to the presence of more oxygen vacancies, enhanced Mn4+/Mn4+ + Mn3+ + Mn2+ ratio and more surface adsorbed oxygen, which were proved by XRD, BET, Raman, and XPS. H2-TPR results also show that the strong interaction between the Ce0.75Zr0.25O2 support and MnOx improved the redox properties significantly as compared to pure CeO2 and ZrO2 supported MnOx catalysts.
Catalysis Science & Technology | 2015
Deshetti Jampaiah; Samuel J. Ippolito; Ylias M. Sabri; Benjaram M. Reddy; Suresh K. Bhargava
Ceria (CeO2) is a well-known material for various industrial applications due to its unique redox properties. Such properties, dominated by structural defects that are primarily oxygen vacancies associated with the Ce3+/Ce4+ redox couple, can be easily modulated and optimized by different approaches. In this paper, nanosized Mn and Fe codoped CeO2 solid solutions, Ce0.7−xMn0.3FexO2−δ (x = 0.05–0.2), were prepared by a simple coprecipitation method and tested towards elemental mercury (Hg0) oxidation and adsorption. The obtained solid solutions were characterized in detail at the structural and electronic level by various techniques, namely, XRD, ICP-OES, BET surface area, TEM, Raman, H2-TPR, and XPS. The XRD results suggest that the Mn and/or Fe dopant cations are effectively incorporated into the CeO2 lattice. BET surface area results suggest that the addition of Mn and/or Fe dopants to CeO2 significantly reduces its crystallite size and thereby improves the surface area. Raman, H2-TPR, and XPS results reveal that the Mn and/or Fe dopant cations in the ceria lattice increased the concentration of structural oxygen vacancies and the reducibility of the redox pair Ce4+/Ce3+. The Hg0 oxidation and adsorption studies indicate that Ce0.7−xMn0.3FexO2−δ solid solutions exhibited the highest activity compared to pure CeO2. In particular, the Ce0.5Mn0.3Fe0.2O2−δ (CMF20) solid solution shows an Hg0 oxidation efficiency (Eoxi) of 86.5%. It was found that the doping of both Mn and Fe led to lattice distortion and restrained growth of CeO2, resulting in synergistic increase in oxygen vacancies and catalytic activity.
RSC Advances | 2016
Deshetti Jampaiah; Perala Venkataswamy; Victoria E. Coyle; Benjaram M. Reddy; Suresh K. Bhargava
Surface active sites such as oxygen vacancies, Ce3+ ions, and unsaturated coordinated sites on nano ceria (CeO2) are significant in catalytic oxidation reactions. The recent development in nanoengineered CeO2 made a pathway to extend its use in various catalytic applications. In this study, transition metals (Mn2+, Ni2+, and Co2+) doped CeO2 nanorods (NRs) were prepared by hydrothermal method and tested towards CO oxidation. Furthermore, the samples were characterized by various physicochemical techniques, namely, TEM and HR-TEM, SEM-EDX, XRD, ICP-OES, BET surface area, Raman spectroscopy, XPS, and H2-TPR. The results demonstrated that the incorporation of dopants greatly enhances the surface defective sites (Ce3+ ions and a high degree of surface roughness) and redox properties of CeO2 NRs and thereby improved catalytic activity. Especially, the Co–CeO2 NR catalyst exhibited better CO conversion (T50 ∼ 145 °C) when compared to pure CeO2 NR (T50 ∼ 312 °C).
Chemistry: A European Journal | 2017
Max J. H. Worthington; Renata L. Kucera; Inês S. Albuquerque; Christopher T. Gibson; Alexander Sibley; Ashley D. Slattery; Jonathan A. Campbell; Salah F. K. Alboaiji; Katherine A. Muller; Jason Young; Nick Adamson; Jason R. Gascooke; Deshetti Jampaiah; Ylias M. Sabri; Suresh K. Bhargava; Samuel J. Ippolito; David A. Lewis; Jamie Scott Quinton; Amanda V. Ellis; Alexander Johs; Gonçalo J. L. Bernardes; Justin M. Chalker
Abstract Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkali plant operation, metallurgy, and areas of agriculture in which mercury‐rich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low‐cost mercury sorbents made solely from sulfur and unsaturated cooking oils. A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by‐product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury‐capturing polymers can be synthesised entirely from waste and supplied on multi‐kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry.
Nanoscale | 2018
Mandeep Singh; Deshetti Jampaiah; Ahmad Esmaielzadeh Kandjani; Ylias M. Sabri; Enrico Della Gaspera; Philipp Reineck; Martyna Judd; Julien Langley; Nicholas Cox; Joel van Embden; Edwin Mayes; Brant C. Gibson; Suresh K. Bhargava; Rajesh Ramanathan; Vipul Bansal
Oxygen vacancies in inorganic semiconductors play an important role in reducing electron-hole recombination, which may have important implications in photocatalysis. Cuprous oxide (Cu2O), a visible light active p-type semiconductor, is a promising photocatalyst. However, the synthesis of photostable Cu2O enriched with oxygen defects remains a challenge. We report a simple method for the gram-scale synthesis of highly photostable Cu2O nanoparticles by the hydrolysis of a Cu(i)-triethylamine [Cu(i)-TEA] complex at low temperature. The oxygen vacancies in these Cu2O nanoparticles led to a significant increase in the lifetimes of photogenerated charge carriers upon excitation with visible light. This, in combination with a suitable energy band structure, allowed Cu2O nanoparticles to exhibit outstanding photoactivity in visible light through the generation of electron-mediated hydroxyl (OH˙) radicals. This study highlights the significance of oxygen defects in enhancing the photocatalytic performance of promising semiconductor photocatalysts.
ACS Applied Materials & Interfaces | 2017
Deshetti Jampaiah; Vijay Kumar Velisoju; Perala Venkataswamy; Victoria E. Coyle; Ayman Nafady; Benjaram M. Reddy; Suresh K. Bhargava
In the present work, nanowire morphologies of α-MnO2, cobalt monodoped α-MnO2, Cu and Co bidoped α-MnO2, and Ni and Co bidoped α-MnO2 samples were prepared by a facile hydrothermal synthesis. The structural, morphological, surface, and redox properties of all the as-prepared samples were investigated by various characterization techniques, namely, scanning electron microscopy (SEM), transmission and high resolution electron microscopy (TEM and HR-TEM), powder X-ray diffraction (XRD), N2 sorption surface area measurements, X-ray photoelectron spectroscopy (XPS), hydrogen-temperature-programmed reduction (H2-TPR), and oxygen-temperature-programmed desorption (O2-TPD). The soot oxidation performance was found to be significantly improved via metal mono- and bidoping. In particular, Cu and Co bidoped α-MnO2 nanowires showed a remarkable improvement in soot oxidation performance, with its T50 (50% soot conversion) values of 279 and 431 °C under tight and loose contact conditions, respectively. The soot combustion activation energy for the Cu and Co bidoped MnO2 nanowires is 121 kJ/mol. The increased oxygen vacancies, greater number of active sites, facile redox behavior, and strong synergistic interaction were the key factors for the excellent catalytic activity. The longevity of Cu and Co bidoped α-MnO2 nanowires was analyzed, and it was found that the Cu/Co bidoped α-MnO2 nanowires were highly stable after five successive cycles and showed an insignificant decrease in soot oxidation activity. Furthermore, the HR-TEM analysis of a spent catalyst after five cycles indicated that the (310) crystal plane of α-MnO2 interacts with the soot particles; therefore, we can assume that more-reactive exposed surfaces positively affect the reaction of soot oxidation. Thus, the Cu and Co bidoped α-MnO2 nanowires provide promise as a highly effective alternative to precious metal based automotive catalysts.
Nature Communications | 2018
Wenyue Zou; Ana González; Deshetti Jampaiah; Rajesh Ramanathan; Mohammad Taha; Sumeet Walia; Sharath Sriram; Madhu Bhaskaran; José M. Domínguez-Vera; Vipul Bansal
Spectrally–selective monitoring of ultraviolet radiations (UVR) is of paramount importance across diverse fields, including effective monitoring of excessive solar exposure. Current UV sensors cannot differentiate between UVA, B, and C, each of which has a remarkably different impact on human health. Here we show spectrally selective colorimetric monitoring of UVR by developing a photoelectrochromic ink that consists of a multi-redox polyoxometalate and an e− donor. We combine this ink with simple components such as filter paper and transparency sheets to fabricate low-cost sensors that provide naked-eye monitoring of UVR, even at low doses typically encountered during solar exposure. Importantly, the diverse UV tolerance of different skin colors demands personalized sensors. In this spirit, we demonstrate the customized design of robust real-time solar UV dosimeters to meet the specific need of different skin phototypes. These spectrally–selective UV sensors offer remarkable potential in managing the impact of UVR in our day-to-day life.Current ultraviolet (UV) sensors cannot differentiate between UVA, B and C, each of which has a remarkably different impact on human health. Here the authors show spectrally-selective colorimetric monitoring of ultraviolet radiations by developing a photoelectrochromic ink that consists of a multiredox polyoxometalate and an e– donor.
Journal of Materials Chemistry B | 2016
Deshetti Jampaiah; T. Srinivasa Reddy; Ahmad Esmaielzadeh Kandjani; P. R. Selvakannan; Ylias M. Sabri; Victoria E. Coyle; Ravi Shukla; Suresh K. Bhargava
Journal of Materials Chemistry B | 2017
Deshetti Jampaiah; T. Srinivasa Reddy; Victoria E. Coyle; Ayman Nafady; Suresh K. Bhargava