Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Desiderato Annoscia is active.

Publication


Featured researches published by Desiderato Annoscia.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees

Gennaro Di Prisco; Valeria Cavaliere; Desiderato Annoscia; Paola Varricchio; Emilio Caprio; Francesco Nazzi; Giuseppe Gargiulo; Francesco Pennacchio

Significance Honey bees are exposed to a wealth of synergistically interacting stress factors, which may induce colony losses often associated with high infection levels of pathogens. Neonicotinoid insecticides have been reported to enhance the impact of pathogens, but the underlying immune alteration is still obscure. In this study we describe the molecular mechanism through which clothianidin adversely affects the insect immune response and promotes replication of a viral pathogen in honey bees bearing covert infections. Our results shed light on a further level of regulation of the immune response in insects and have implications for bee conservation. Large-scale losses of honey bee colonies represent a poorly understood problem of global importance. Both biotic and abiotic factors are involved in this phenomenon that is often associated with high loads of parasites and pathogens. A stronger impact of pathogens in honey bees exposed to neonicotinoid insecticides has been reported, but the causal link between insecticide exposure and the possible immune alteration of honey bees remains elusive. Here, we demonstrate that the neonicotinoid insecticide clothianidin negatively modulates NF-κB immune signaling in insects and adversely affects honey bee antiviral defenses controlled by this transcription factor. We have identified in insects a negative modulator of NF-κB activation, which is a leucine-rich repeat protein. Exposure to clothianidin, by enhancing the transcription of the gene encoding this inhibitor, reduces immune defenses and promotes the replication of the deformed wing virus in honey bees bearing covert infections. This honey bee immunosuppression is similarly induced by a different neonicotinoid, imidacloprid, but not by the organophosphate chlorpyriphos, which does not affect NF-κB signaling. The occurrence at sublethal doses of this insecticide-induced viral proliferation suggests that the studied neonicotinoids might have a negative effect at the field level. Our experiments uncover a further level of regulation of the immune response in insects and set the stage for studies on neural modulation of immunity in animals. Furthermore, this study has implications for the conservation of bees, as it will contribute to the definition of more appropriate guidelines for testing chronic or sublethal effects of pesticides used in agriculture.


PLOS Pathogens | 2012

Synergistic Parasite-Pathogen Interactions Mediated by Host Immunity Can Drive the Collapse of Honeybee Colonies

Francesco Nazzi; Sam P. Brown; Desiderato Annoscia; Fabio Del Piccolo; Gennaro Di Prisco; Paola Varricchio; Giorgio Della Vedova; Federica Cattonaro; Emilio Caprio; Francesco Pennacchio

The health of the honeybee and, indirectly, global crop production are threatened by several biotic and abiotic factors, which play a poorly defined role in the induction of widespread colony losses. Recent descriptive studies suggest that colony losses are often related to the interaction between pathogens and other stress factors, including parasites. Through an integrated analysis of the population and molecular changes associated with the collapse of honeybee colonies infested by the parasitic mite Varroa destructor, we show that this parasite can de-stabilise the within-host dynamics of Deformed wing virus (DWV), transforming a cryptic and vertically transmitted virus into a rapidly replicating killer, which attains lethal levels late in the season. The de-stabilisation of DWV infection is associated with an immunosuppression syndrome, characterized by a strong down-regulation of the transcription factor NF-κB. The centrality of NF-κB in host responses to a range of environmental challenges suggests that this transcription factor can act as a common currency underlying colony collapse that may be triggered by different causes. Our results offer an integrated account for the multifactorial origin of honeybee losses and a new framework for assessing, and possibly mitigating, the impact of environmental challenges on honeybee health.


Proceedings of the National Academy of Sciences of the United States of America | 2016

A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health

Gennaro Di Prisco; Desiderato Annoscia; Marina Margiotta; Rosalba Ferrara; Paola Varricchio; Virginia Zanni; Emilio Caprio; Francesco Nazzi; Francesco Pennacchio

Significance The parasitic mite Varroa destructor and the deformed wing virus (DWV) are linked in a mutualistic symbiosis. The mite acts as vector of the viral pathogen, whereas the DWV-induced immunosuppression in honey bees favors mite feeding and reproduction. This functional interaction underpins a rapidly escalating immunosuppression, which can be primed and/or aggravated by a wealth of stress factors that co-trigger colony losses. Our experimental results explain the pivotal role proposed for the Varroa–DWV association in the induction of honey bee colony losses. Here we provide a functional framework for studying the dynamics of this multifactorial syndrome and defining effective strategies to reduce its negative impact on the beekeeping industry. Honey bee colony losses are triggered by interacting stress factors consistently associated with high loads of parasites and/or pathogens. A wealth of biotic and abiotic stressors are involved in the induction of this complex multifactorial syndrome, with the parasitic mite Varroa destructor and the associated deformed wing virus (DWV) apparently playing key roles. The mechanistic basis underpinning this association and the evolutionary implications remain largely obscure. Here we narrow this research gap by demonstrating that DWV, vectored by the Varroa mite, adversely affects humoral and cellular immune responses by interfering with NF-κB signaling. This immunosuppressive effect of the viral pathogen enhances reproduction of the parasitic mite. Our experimental data uncover an unrecognized mutualistic symbiosis between Varroa and DWV, which perpetuates a loop of reciprocal stimulation with escalating negative effects on honey bee immunity and health. These results largely account for the remarkable importance of this mite–virus interaction in the induction of honey bee colony losses. The discovery of this mutualistic association and the elucidation of the underlying regulatory mechanisms sets the stage for a more insightful analysis of how synergistic stress factors contribute to colony collapse, and for the development of new strategies to alleviate this problem.


Journal of Insect Physiology | 2012

How does the mite Varroa destructor kill the honeybee Apis mellifera? Alteration of cuticular hydrcarbons and water loss in infested honeybees

Desiderato Annoscia; Fabio Del Piccolo; Francesco Nazzi

Several factors threaten the health of honeybees; among them the parasitic mite Varroa destructor and the Deformed Wing Virus play a major role. Recently, the dangerous interplay between the mite and the virus was studied in detail and the transition, triggered by mite feeding, from a benign covert infection to a devastating viral outbreak, characterized by an intense viral replication, associated with some characteristic symptoms, was described. In order to gain insight into the events preceding that crucial transition we carried out standardized lab experiments aiming at studying the effects of parasitization in asymptomatic bees to establish a relationship between such effects and bee mortality. It appears that parasitization alters the capacity of the honeybee to regulate water exchange; this, in turn, has severe effects on bee survival. These results are discussed in light of possible novel strategies aiming at mitigating the impact of the parasite on honeybee health.


BMC Genomics | 2017

Unity in defence: honeybee workers exhibit conserved molecular responses to diverse pathogens

Vincent Doublet; Yvonne Poeschl; Andreas Gogol-Döring; Cédric Alaux; Desiderato Annoscia; Christian Aurori; Seth M. Barribeau; Oscar C. Bedoya-Reina; Mark J. F. Brown; James C. Bull; Michelle L. Flenniken; David A. Galbraith; Elke Genersch; Sebastian Gisder; Ivo Grosse; Holly L. Holt; Dan Hultmark; H. M. G. Lattorff; Y. Le Conte; Fabio Manfredini; Dino P. McMahon; Robin F. A. Moritz; Francesco Nazzi; Elina L. Niño; Katja Nowick; R.P. van Rij; Robert J. Paxton; Christina M. Grozinger

BackgroundOrganisms typically face infection by diverse pathogens, and hosts are thought to have developed specific responses to each type of pathogen they encounter. The advent of transcriptomics now makes it possible to test this hypothesis and compare host gene expression responses to multiple pathogens at a genome-wide scale. Here, we performed a meta-analysis of multiple published and new transcriptomes using a newly developed bioinformatics approach that filters genes based on their expression profile across datasets. Thereby, we identified common and unique molecular responses of a model host species, the honey bee (Apis mellifera), to its major pathogens and parasites: the Microsporidia Nosema apis and Nosema ceranae, RNA viruses, and the ectoparasitic mite Varroa destructor, which transmits viruses.ResultsWe identified a common suite of genes and conserved molecular pathways that respond to all investigated pathogens, a result that suggests a commonality in response mechanisms to diverse pathogens. We found that genes differentially expressed after infection exhibit a higher evolutionary rate than non-differentially expressed genes. Using our new bioinformatics approach, we unveiled additional pathogen-specific responses of honey bees; we found that apoptosis appeared to be an important response following microsporidian infection, while genes from the immune signalling pathways, Toll and Imd, were differentially expressed after Varroa/virus infection. Finally, we applied our bioinformatics approach and generated a gene co-expression network to identify highly connected (hub) genes that may represent important mediators and regulators of anti-pathogen responses.ConclusionsOur meta-analysis generated a comprehensive overview of the host metabolic and other biological processes that mediate interactions between insects and their pathogens. We identified key host genes and pathways that respond to phylogenetically diverse pathogens, representing an important source for future functional studies as well as offering new routes to identify or generate pathogen resilient honey bee stocks. The statistical and bioinformatics approaches that were developed for this study are broadly applicable to synthesize information across transcriptomic datasets. These approaches will likely have utility in addressing a variety of biological questions.


Naturwissenschaften | 2009

Octanoic acid confers to royal jelly varroa-repellent properties

Francesco Nazzi; Renzo Bortolomeazzi; Giorgio Della Vedova; Fabio Del Piccolo; Desiderato Annoscia; Norberto Milani

The mite Varroa destructor Anderson & Trueman is a parasite of the honeybee Apis mellifera L. and represents a major threat for apiculture in the Western world. Reproduction takes place only inside bee brood cells that are invaded just before sealing; drone cells are preferred over worker cells, whereas queen cells are not normally invaded. Lower incidence of mites in queen cells is at least partly due to the deterrent activity of royal jelly. In this study, the repellent properties of royal jelly were investigated using a lab bioassay. Chemical analysis showed that octanoic acid is a major volatile component of royal jelly; by contrast, the concentration is much lower in drone and worker larval food. Bioassays, carried out under lab conditions, demonstrated that octanoic acid is repellent to the mite. Field studies in bee colonies confirmed that the compound may interfere with the process of cell invasion by the mite.


Apidologie | 2015

Mite infestation during development alters the in-hive behaviour of adult honeybees

Desiderato Annoscia; Fabio Del Piccolo; Francesca Covre; Francesco Nazzi

Honeybee colonies (Apis mellifera) host a number of parasites, among which the mite Varroa destructor has been implicated in colony losses recorded around the world in recent years. Although many studies have been carried out on the direct and indirect damage caused by the mite to its host, the possible influence of mite infestation on the in-hive behaviour of honeybees has received little attention so far; moreover, to our knowledge, no behavioural study has been performed on adult bees infested during the pupal stage, which is when the mite causes most of its detrimental effects. In order to assess any possible consequence of infestation on the in-hive behaviour of honeybees, we carried out detailed observations on adult bees artificially infested during the pupal stage. We recorded a higher proportion of inactive bees among the infested ones; moreover, we observed that infested bees are less involved in tending larvae and dealing with hive duties compared to their uninfested mates. These results allow to draw some hypotheses which could be tested using the infestation method presented here.


Scientific Reports | 2017

Elucidating the mechanisms underlying the beneficial health effects of dietary pollen on honey bees ( Apis mellifera ) infested by Varroa mite ectoparasites

Desiderato Annoscia; Virginia Zanni; David A. Galbraith; Anna Quirici; Christina M. Grozinger; Renzo Bortolomeazzi; Francesco Nazzi

Parasites and pathogens of the honey bee (Apis mellifera) are key factors underlying colony losses, which are threatening the beekeeping industry and agriculture as a whole. To control the spread and development of pathogen infections within the colony, honey bees use plant resins with antibiotic activity, but little is known about the properties of other substances, that are mainly used as a foodstuff, for controlling possible diseases both at the individual and colony level. In this study, we tested the hypothesis that pollen is beneficial for honey bees challenged with the parasitic mite Varroa destructor associated to the Deformed Wing Virus. First, we studied the effects of pollen on the survival of infested bees, under laboratory and field conditions, and observed that a pollen rich diet can compensate the deleterious effects of mite parasitization. Subsequently, we characterized the pollen compounds responsible for the observed positive effects. Finally, based on the results of a transcriptomic analysis of parasitized bees fed with pollen or not, we developed a comprehensive framework for interpreting the observed effects of pollen on honey bee health, which incorporates the possible effects on cuticle integrity, energetic metabolism and immune response.


Insect Biochemistry and Molecular Biology | 2017

Transcriptional signatures of parasitization and markers of colony decline in Varroa-infested honey bees (Apis mellifera)

Virginia Zanni; David A. Galbraith; Desiderato Annoscia; Christina M. Grozinger; Francesco Nazzi

Extensive annual losses of honey bee colonies (Apis mellifera L.) reported in the northern hemisphere represent a global problem for agriculture and biodiversity. The parasitic mite Varroa destructor, in association with deformed wing virus (DWV), plays a key role in this phenomenon, but the underlying mechanisms are still unclear. To elucidate these mechanisms, we analyzed the gene expression profile of uninfested and mite infested bees, under laboratory and field conditions, highlighting the effects of parasitization on the bees transcriptome under a variety of conditions and scenarios. Parasitization was significantly correlated with higher viral loads. Honey bees exposed to mite infestation exhibited an altered expression of genes related to stress response, immunity, nervous system function, metabolism and behavioural maturation. Additionally, mite infested young bees showed a gene expression profile resembling that of forager bees. To identify potential molecular markers of colony decline, the expression of genes that were commonly regulated across the experiments were subsequently assessed in colonies experiencing increasing mite infestation levels. These studies suggest that PGRP-2, hymenoptaecin, a glucan recognition protein, UNC93 and a p450 cytocrome maybe suitable general biomarkers of Varroa-induced colony decline. Furthermore, the reliability of vitellogenin, a yolk protein previously identified as a good marker of colony survival, was confirmed here.


bioRxiv | 2018

Haemolymph removal by the parasite Varroa destructor can trigger the proliferation of the Deformed Wing Virus in mite infested bees (Apis mellifera), contributing to enhanced pathogen virulence

Desiderato Annoscia; Sam P. Brown; Gennaro Di Prisco; Emanuele De Paoli; Simone Del Fabbro; Virginia Zanni; David A. Galbraith; Emilio Caprio; Christina M. Grozinger; Francesco Pennacchio; Francesco Nazzi

The association between the Deformed Wing Virus and the parasitic mite Varroa destructor has been identified as a major cause of worldwide honey bee colony losses. The mite acts as a vector of the viral pathogen and can trigger its replication in infected bees. However, the mechanistic details underlying this tripartite interaction are still poorly defined, and, in particular, the causes of viral proliferation in mite infested bees. Here we develop and test a novel hypothesis - grounded in ecological predator-prey theory - that mite feeding destabilizes viral immune control through the removal of both viral ‘prey’ and immune ‘predators’, triggering uncontrolled viral replication. Consistent with this hypothesis, we show that experimental removal of increasing volumes of haemolymph from individual bees results in increasing viral densities. In contrast, we find no support for alternative proposed mechanisms of viral expansion via mite immune-suppression or within-host viral evolution. Overall, these results provide a new model for the mechanisms driving pathogen-parasite interactions in bees, which ultimately underpin honey bee health decline and colony losses.

Collaboration


Dive into the Desiderato Annoscia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Galbraith

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Francesco Pennacchio

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Gennaro Di Prisco

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Elina L. Niño

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Holly L. Holt

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oscar C. Bedoya-Reina

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge