Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Desirée E.C. Smith is active.

Publication


Featured researches published by Desirée E.C. Smith.


American Journal of Human Genetics | 2011

Adenosine Kinase Deficiency Disrupts the Methionine Cycle and Causes Hypermethioninemia, Encephalopathy, and Abnormal Liver Function

Magnus K. Bjursell; Henk J. Blom; Jordi Asin Cayuela; Martin Engvall; Nicole Lesko; Shanti Balasubramaniam; Göran Brandberg; Maria Halldin; Maria Falkenberg; Cornelis Jakobs; Desirée E.C. Smith; Eduard A. Struys; Ulrika von Döbeln; Claes M. Gustafsson; Joakim Lundeberg; Anna Wedell

Four inborn errors of metabolism (IEMs) are known to cause hypermethioninemia by directly interfering with the methionine cycle. Hypermethioninemia is occasionally discovered incidentally, but it is often disregarded as an unspecific finding, particularly if liver disease is involved. In many individuals the hypermethioninemia resolves without further deterioration, but it can also represent an early sign of a severe, progressive neurodevelopmental disorder. Further investigation of unclear hypermethioninemia is therefore important. We studied two siblings affected by severe developmental delay and liver dysfunction. Biochemical analysis revealed increased plasma levels of methionine, S-adenosylmethionine (AdoMet), and S-adenosylhomocysteine (AdoHcy) but normal or mildly elevated homocysteine (Hcy) levels, indicating a block in the methionine cycle. We excluded S-adenosylhomocysteine hydrolase (SAHH) deficiency, which causes a similar biochemical phenotype, by using genetic and biochemical techniques and hypothesized that there was a functional block in the SAHH enzyme as a result of a recessive mutation in a different gene. Using exome sequencing, we identified a homozygous c.902C>A (p.Ala301Glu) missense mutation in the adenosine kinase gene (ADK), the function of which fits perfectly with this hypothesis. Increased urinary adenosine excretion confirmed ADK deficiency in the siblings. Four additional individuals from two unrelated families with a similar presentation were identified and shown to have a homozygous c.653A>C (p.Asp218Ala) and c.38G>A (p.Gly13Glu) mutation, respectively, in the same gene. All three missense mutations were deleterious, as shown by activity measurements on recombinant enzymes. ADK deficiency is a previously undescribed, severe IEM shedding light on a functional link between the methionine cycle and adenosine metabolism.


American Journal of Human Genetics | 2011

Identification and Characterization of an Inborn Error of Metabolism Caused by Dihydrofolate Reductase Deficiency

Siddharth Banka; Henk J. Blom; John H. Walter; Majid Aziz; Jill Urquhart; Christopher M. Clouthier; Gillian I. Rice; Arjan P.M. de Brouwer; Emma Hilton; Grace Vassallo; Andrew Will; Desirée E.C. Smith; Yvo M. Smulders; Ron A. Wevers; Robert Steinfeld; Simon Heales; Yanick J. Crow; Joelle N. Pelletier; Simon A. Jones; William G. Newman

Dihydrofolate reductase (DHFR) is a critical enzyme in folate metabolism and an important target of antineoplastic, antimicrobial, and antiinflammatory drugs. We describe three individuals from two families with a recessive inborn error of metabolism, characterized by megaloblastic anemia and/or pancytopenia, severe cerebral folate deficiency, and cerebral tetrahydrobiopterin deficiency due to a germline missense mutation in DHFR, resulting in profound enzyme deficiency. We show that cerebral folate levels, anemia, and pancytopenia of DHFR deficiency can be corrected by treatment with folinic acid. The characterization of this disorder provides evidence for the link between DHFR and metabolism of cerebral tetrahydrobiopterin, which is required for the formation of dopamine, serotonin, and norepinephrine and for the hydroxylation of aromatic amino acids. Moreover, this relationship provides insight into the role of folates in neurological conditions, including depression, Alzheimer disease, and Parkinson disease.


Arthritis Research & Therapy | 2013

Evaluation of the Novel Folate Receptor Ligand (18F) Fluoro-PEG-Folate for Macrophage Targeting in a Rat Model of Arthritis.

Yoony Y. J. Gent; Karin Weijers; Carla F. M. Molthoff; Albert D. Windhorst; Marc C. Huisman; Desirée E.C. Smith; Sumith A. Kularatne; Gerrit Jansen; Philip S. Low; Adriaan A. Lammertsma; Conny J. van der Laken

IntroductionDetection of (subclinical) synovitis is relevant for both early diagnosis and monitoring of therapy of rheumatoid arthritis (RA). Previously, the potential of imaging (sub)clinical arthritis was demonstrated by targeting the translocator protein in activated macrophages using (R)-[11C]PK11195 and positron emission tomography (PET). Images, however, also showed significant peri-articular background activity. The folate receptor (FR)-β is a potential alternative target for imaging activated macrophages. Therefore, the PET tracer [18F]fluoro-PEG-folate was synthesized and evaluated in both in vitro and ex vivo studies using a methylated BSA induced arthritis model.Methods[18F]fluoro-PEG-folate was synthesized in a two-step procedure. Relative binding affinities of non-radioactive fluoro-PEG-folate, folic acid and naturally circulating 5-methyltetrahydrofolate (5-Me-THF) to FR were determined using KB cells with high expression of FR. Both in vivo [18F]fluoro-PEG-folate PET and ex vivo tissue distribution studies were performed in arthritic and normal rats and results were compared with those of the established macrophage tracer (R)-[11C]PK11195.Results[18F]fluoro-PEG-folate was synthesized with a purity >97%, a yield of 300 to 1,700 MBq and a specific activity between 40 and 70 GBq/µmol. Relative in vitro binding affinity for FR of F-PEG-folate was 1.8-fold lower than that of folic acid, but 3-fold higher than that of 5-Me-THF . In the rat model, [18F]fluoro-PEG-folate uptake in arthritic knees was increased compared with both contralateral knees and knees of normal rats. Uptake in arthritic knees could be blocked by an excess of glucosamine-folate, consistent with [18F]fluoro-PEG-folate being specifically bound to FR. Arthritic knee-to-bone and arthritic knee-to-blood ratios of [18F]fluoro-PEG-folate were increased compared with those of (R)-[11C]PK11195. Reduction of 5-Me-THF levels in rat plasma to those mimicking human levels increased absolute [18F]fluoro-PEG-folate uptake in arthritic joints, but without improving target-to-background ratios.ConclusionsThe novel PET tracer [18F]fluoro-PEG-folate, designed to target FR on activated macrophages provided improved contrast in a rat model of arthritis compared with the accepted macrophage tracer (R)-[11C]PK11195. These results warrant further exploration of [18F]fluoro-PEG-folate as a putative PET tracer for imaging (sub)clinical arthritis in RA patients.


Journal of Chromatography B | 2012

Simultaneous determination of asymmetric and symmetric dimethylarginine, L-monomethylarginine, L-arginine, and L-homoarginine in biological samples using stable isotope dilution liquid chromatography tandem mass spectrometry

Mariska Davids; Eliane Swieringa; Fredrik Palm; Desirée E.C. Smith; Yvo M. Smulders; Peter G. Scheffer; Henk J. Blom; Tom Teerlink

Production of the endogenous vasodilator nitric oxide (NO) from L-arginine by NO synthase is modulated by L-homoarginine, l-monomethylargine (MMA), asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA). Here we report on a stable isotope dilution liquid chromatography tandem mass spectrometry (LC-MS/MS) method for simultaneous determination of these metabolites in plasma, cells and tissues. After addition of the internal standards (D(7)-ADMA, D(4)-L-homoarginine and (13)C(6)-L-arginine), analytes were extracted from the samples using Waters Oasis MCX solid phase extraction cartridges. Butylated analytes were separated isocratically on a Waters XTerra MS C18 column (3.5 μm, 3.9 mm × 100 mm) using 600 mg/L ammonium formate in water - acetonitrile (95.5:4.5, v/v) containing 0.1 vol% formic acid, and subsequently measured on an AB Sciex API 3000 triple quadrupole mass spectrometer. Multiple reaction monitoring in positive mode was used for analyte quantification. Validation was performed in plasma. Calibration lines were linear (r(2)≥0.9979) and lower limits of quantification in plasma were 0.4 nM for ADMA and SDMA and 0.8 nM for the other analytes. Accuracy (% bias) was <3% except for MMA (<7%), intra-assay precision (expressed as CV) was <3.5%, inter-assay precision <9.6%, and recovery 92.9-103.2% for all analytes. The method showed good correlation (r(2)≥0.9125) with our previously validated HPLC-fluorescence method for measurement in plasma, and was implemented with good performance for measurement of tissue samples. Application of the method revealed the remarkably fast (i.e. within 60 min) appearance in plasma of stable isotope-labeled ADMA, SDMA, and MMA during infusion of D(3)-methyl-1-(13)C-methionine in healthy volunteers.


Clinical Chemistry and Laboratory Medicine | 2013

Folic acid supplementation does not reduce intracellular homocysteine, and may disturb intracellular one-carbon metabolism.

Desirée E.C. Smith; Jacqueline M. Hornstra; Robert M. Kok; Henk J. Blom; Yvo M. Smulders

Abstract Background: In randomized trails, folic acid (FA) lowered plasma homocysteine, but failed to reduce cardiovascular risk. We hypothesize this is due to a discrepancy between plasma and intracellular effects of FA. Methods: In a double-blind trial, 50 volunteers were randomized to received 500 µg FA daily for 8 weeks, or placebo. Plasma and peripheral blood mononuclear cell (PBMC) concentrations of homocysteine, S-adenosylmethionine (SAM), S-adenosylhomocysteine, methionine, cystathionine and 5-methyltetrahydrofolate (bioactive folate) were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). PBMCs were used as a cellular model since they display the full spectrum of one-carbon (1C) enzymes and reactions. Results: At baseline, plasma concentrations were a poor reflection of intracellular concentrations for most 1C metabolites, except 5-methyltetrahydrofolate (R=0.33, p=0.02), homocysteine (Hcy) (R=0.35, p=0.01), and cystathionine (R=0.45, p=0.001). FA significantly lowered plasma homocysteine (p=0.00), but failed to lower intracellular homocysteine or change the concentrations of any of the other PBMC 1C metabolites. At baseline, PBMC homocysteine concentrations correlated to PBMC SAM. After FA supplementation, PBMC homocysteine no longer correlated with PBMC SAM, suggesting a loss of SAM’s regulatory function. In vitro experiments in lymphoblasts confirmed that at higher folate substrate concentrations, physiological concentrations of SAM no longer effectively inhibit the key regulatory enzyme methylenetetrahydrofolate reductase (MTHFR). Conclusions: FA supplementation does not reduce intracellular concentrations of Hcy or any of its closely related substances. Rather, FA may disturb physiological regulation of intracellular 1C metabolism by interfering with SAM’s inhibitory effect on MTHFR activity.


European Journal of Clinical Nutrition | 2005

[6S]5-methyltetrahydrofolate or folic acid supplementation and absorption and initial elimination of folate in young and middle-aged adults

K. de Meer; Yvo M. Smulders; Jack R. Dainty; Desirée E.C. Smith; R M Kok; Coen D.A. Stehouwer; Paul Finglas; Cornelis Jakobs

Objectives:To assess the effects of supplementation with the diastereoisomer of 5-methyltetrahydrofolate ([6S]5-methylTHF), as an alternative supplement for folic acid, on folate absorption and elimination, in two age groups.Design:A randomized, double-blind intervention study.Subjects:A total of 12 young (<30 y) and 12 middle-aged (≥50 y) healthy volunteers were recruited.Methods:Volunteers were randomized to receive daily supplementation with 400 μg folic acid or equimolar amounts of [6S]5-methylTHF during 5 weeks. Before and after supplementation, absorption and initial elimination were calculated following oral [2H2]folic acid test doses using isotope kinetics in plasma.Results:Folic acid absorption was lower in the middle-aged as compared to the young adults, both before (P=0.03) and after (P=0.05) supplementation. In the young adults, absorption decreased by 22% after [6S]5-methylTHF and increased by 21% after folic acid (P=0.02). In the other age group, no such changes were found. The folate rate constant of elimination increased after folic acid supplementation in the young (+50%; P=0.05) but not in the middle-aged (+18%; P=0.5) adults.Conclusions:Young adults show increased folate turnover after folic acid supplementation relative to the effect of [6S]5-methylTHF supplementation. Similar differences are not observed in middle-aged adults, in whom folic acid absorption was found to be lower as compared to the young adults.Sponsorship:Financial support was received from the European Union 5th Framework Programme (Grant QLRT-1999-00576).


Gene | 2016

A pilot study to estimate incidence of guanidinoacetate methyltransferase deficiency in newborns by direct sequencing of the GAMT gene

Saadet Mercimek-Mahmutoglu; Ana Pop; Warsha A. Kanhai; M. Fernandez Ojeda; U. Holwerda; Desirée E.C. Smith; J.G. Loeber; P.C.J.I. Schielen; Gajja S. Salomons

BACKGROUND GAMT deficiency is an autosomal recessive disorder of creatine biosynthesis causing developmental delays or intellectual disability in untreated patients as a result of irreversible brain damage occurring prior to diagnosis. Normal neurodevelopmental outcome has been reported in patients treated from neonatal period highlighting the importance of early treatment. METHODS Five hundred anonymized newborns from the National Newborn Screening Program of The Netherlands were included into this pilot study. Direct sequencing of the coding region of the GAMT gene was applied following DNA extraction. The disease causing nature of novel missense variants in the GAMT gene was studied by overexpression studies. GAA and creatine was measured in blood dot spots. RESULTS We detected two carriers, one with a known common (c.327G>A) and one with a novel mutation (c.297_309dup (p.Arg105Glyfs*) in the GAMT gene. The estimated incidence of GAMT deficiency was 1:250,000. We also detected five novel missense variants. Overexpression of these variants in GAMT deficient fibroblasts did restore GAMT activity and thus all were considered rare, but not disease causing variants including the c.131G>T (p.Arg44Leu) variant. Interestingly, this variant was predicted to be pathogenic by in silico analysis. The variants were included in the Leiden Open Variation Database (LOVD) database (www.LOVD.nl/GAMT). The average GAA level was 1.14μmol/L±0.45 standard deviations. The average creatine level was 408μmol/L±106. The average GAA/creatine ratio was 2.94±0.136. CONCLUSION The estimated incidence of GAMT deficiency is 1:250,000 newborns based on our pilot study. The newborn screening for GAMT deficiency should be implemented to identify patients at the asymptomatic stage to achieve normal neurodevelopmental outcome for this treatable neurometabolic disease. Biochemical investigations including GAA, creatine and GAMT enzyme activity measurements are essential to confirm the diagnosis of GAMT deficiency. According to availability, all missense variants can be assessed functionally, as in silico prediction analysis of missense variants is not sufficient to confirm the pathogenicity of missense variants.


Journal of Alzheimer's Disease | 2013

Hyperhomocysteinemia in Alzheimer's disease: the hen and the egg?

Melinda Farkas; Salla Keskitalo; Desirée E.C. Smith; Nadja Bain; Alexander Semmler; Benjamin V. Ineichen; Yvo M. Smulders; Henk J. Blom; Luka Kulic; Michael Linnebank

Hyperhomocysteinemia is associated with Alzheimers disease (AD). The causality of this association is controversial. In this study we tested the effect of a hyperhomocysteinemia-inducing diet in the ArcAβ transgenic AD mouse model. At 14 months of age, the hyperhomocysteinemia-inducing diet yielded higher plasma homocysteine levels in ArcAβ mice compared with wild-type mice. Levels of plasma 5-methyltetrahydrofolate (5-MTHF) in 14-month-old mice on hyperhomocysteinemia-inducing diet were lower in the transgenic than in the wild-type mice. The folate derivate 5-MTHF serves as cofactor in homocysteine metabolism. Oxidative stress, which occurs in the course of disease in the ArcAβ mice, consumes 5-MTHF. Thus, the transgenic mice may plausibly be more vulnerable to 5-MTHF-depleting effects of hyperhomocysteinemia and more vulnerable to hyperhomocysteinemia-inducing diet. This argues that AD pathology predisposes to hyperhomocysteinemia, i.e., as a facultative consequence of AD. However, we also observed that dietary-induced folate reduction and homocysteine increase was associated with an increase of plasma (young animals) and brain (older animals) amyloid-β concentrations. This suggests that the hyperhomocysteinemia-inducing diet worsened pathology in the transgenic mice. In conclusion, this data may argue that folate reduction and hyperhomocysteinemia may contribute to neurodegeneration and may also be triggered by neurodegenerative processes, i.e., represent both a cause and a consequence of neurodegeneration. Such a vicious cycle may be breakable by dietary or supplementation strategies increasing the availability of 5-MTHF.


Journal of Chromatography B | 2012

A liquid chromatography mass spectrometry method for the measurement of cystathionine beta-synthase activity in cell extracts

Desirée E.C. Smith; Marisa I.S. Mendes; L.A.J. Kluijtmans; M. Janssen; Yvo M. Smulders; Henk J. Blom

BACKGROUND In order to correctly assess the efficacy of therapy or diet in intervention studies on the activity of cystathionine β-synthase (CBS) a sensitive analytical method is necessary. METHODS An electrospray LC-MS/MS method preceded by a solid phase extraction step was developed for the measurement of CBS activity in cell extracts. Nonafluoropentanoic acid was used as an ionpair to provide the underivatized cystathionine the desired retention on a C18 column. RESULTS A detection limit of 50pmol cystathionine/h/mg protein was achieved. In fibroblasts, intra- and inter-assay CVs for the CBS activity were 5.2% and 14.7%, respectively. A K(m) value of 8μmol/L for homocysteine, and 2.5μmol/L for serine was calculated. In fibroblasts wildtype, heterozygous, and homozygous CBS activity ranges measured were 8.5-27.0, 4.2-13.4, 0.0-0.7nmol/h×mg protein, respectively. The method was applied to a study where rats were fed 2 diets. Increase of dietary methionine (7.7 versus 3.8mg/kg methionine) significantly increased the CBS activity in rat liver lysates from a median of 58.0 to a median of 71.5 (P=0.037)nmol/h×mg protein. In a lymphoblasts cell culture experiment, the addition of Hcy to the culture media increased the activity of CBS 3 fold. CONCLUSION This LC-MS/MS is able to diagnose CBS deficiency at the enzyme level, and can accurately measure the effect diets or therapy might have on the CBS activity in a variety of cell types.


Seizure-european Journal of Epilepsy | 2017

Intrauterine valproate exposure is associated with alterations in hippocampal cell numbers and folate metabolism in a rat model of valproate teratogenicity

Alexander Semmler; Christian Frisch; Christiane Bleul; Desirée E.C. Smith; Laurent Bigler; Jean-Christophe Prost; Henk J. Blom; Michael Linnebank

PURPOSE Valproate is one of the most commonly used anticonvulsive drugs. Despite its significant benefits, the teratogenicity of valproate is a relevant problem in the treatment of women of childbearing age. In addition to major congenital malformations, such as neural tube defects, reduced intelligence and attention after intrauterine valproate exposure are reported. Until now the mechanisms of teratogenicity of VPA are poorly understood and concepts how to reduce valproate teratogenicity are lacking. METHODS In a rat model of valproate teratogenicity we examined hippocampal cell structure in 4 week old animals with a stereological approach. As potential mechanisms of VPA teratogenicity we examined histone acetylation by western blotting and metabolites of the folate metabolism as well as global DNA methylation by tandem mass spectrometry in the brain and liver tissue of newborn pups (p0). RESULTS We found an increase in the number of neurons in the hippocampal areas CA1/2 (p=0.018) and CA3 (p=0.022), as well as a decreased number of astrocytes in CA1/2 (p=0.004) and CA3 (p=0.003) after intrauterine VPA exposure, as a possible indication of altered cell differentiation during intrauterine VPA exposure. Valproate exposure was also associated with an increase in 5-methyl-tetrahydrofolate (THF) (p=0.002) and a decrease in 5-10-methenyl-THF in the brain of newborn pups, as well as a reduced homocysteine plasma level (p<0.001). The described changes in hippocampal cell numbers and folate metabolism were only significant after high-dose intrauterine VPA exposure indicating a dose-dependent effect. VPA exposure was not associated with changes in histone acetylation or global DNA methylation in brain tissue in newborn pups. CONCLUSION This study shows that intrauterine VPA exposure is associated with changes in hippocampal cell numbers in the CA1/2 and CA3 region and in folate metabolism.

Collaboration


Dive into the Desirée E.C. Smith's collaboration.

Top Co-Authors

Avatar

Yvo M. Smulders

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Henk J. Blom

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Cornelis Jakobs

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gajja S. Salomons

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Warsha A. Kanhai

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana Pop

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge