Desmond W. M. Lau
RMIT University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Desmond W. M. Lau.
Nature Communications | 2017
Benjamin J. Carey; Jian Zhen Ou; Rhiannon M. Clark; Kyle J. Berean; Anthony S. R. Chesman; Salvy P. Russo; Desmond W. M. Lau; Zai-Quan Xu; Qiaoliang Bao; Omid Kevehei; Brant C. Gibson; Michael D. Dickey; Richard B. Kaner; Torben Daeneke; Kourosh Kalantar-zadeh
A variety of deposition methods for two-dimensional crystals have been demonstrated; however, their wafer-scale deposition remains a challenge. Here we introduce a technique for depositing and patterning of wafer-scale two-dimensional metal chalcogenide compounds by transforming the native interfacial metal oxide layer of low melting point metal precursors (group III and IV) in liquid form. In an oxygen-containing atmosphere, these metals establish an atomically thin oxide layer in a self-limiting reaction. The layer increases the wettability of the liquid metal placed on oxygen-terminated substrates, leaving the thin oxide layer behind. In the case of liquid gallium, the oxide skin attaches exclusively to a substrate and is then sulfurized via a relatively low temperature process. By controlling the surface chemistry of the substrate, we produce large area two-dimensional semiconducting GaS of unit cell thickness (∼1.5 nm). The presented deposition and patterning method offers great commercial potential for wafer-scale processes.
Advanced Materials | 2012
Barbara A. Fairchild; Sergey Rubanov; Desmond W. M. Lau; Marc Robinson; Irene Suarez-Martinez; Nigel A. Marks; Andrew D. Greentree; D.G. McCulloch; Steven Prawer
The breakdown of the diamond lattice is explored by ion implantation and molecular dynamics simulations. We show that lattice breakdown is strain-driven, rather than damage-driven, and that the lattice persists until 16% of the atoms have been removed from their lattice sites. The figure shows the transition between amorphous carbon and diamond, with the interfaces highlighted with dashed lines.
Nano Letters | 2016
Amgad R. Rezk; Benjamin J. Carey; Adam F. Chrimes; Desmond W. M. Lau; Brant C. Gibson; Changxi Zheng; Michael S. Fuhrer; Leslie Y. Yeo; Kourosh Kalantar-zadeh
By exploiting the very recent discovery of the piezoelectricity in odd-numbered layers of two-dimensional molybdenum disulfide (MoS2), we show the possibility of reversibly tuning the photoluminescence of single and odd-numbered multilayered MoS2 using high frequency sound wave coupling. We observe a strong quenching in the photoluminescence associated with the dissociation and spatial separation of electrons-holes quasi-particles at low applied acoustic powers. At the same applied powers, we note a relative preference for ionization of trions into excitons. This work also constitutes the first visual presentation of the surface displacement in one-layered MoS2 using laser Doppler vibrometry. Such observations are associated with the acoustically generated electric field arising from the piezoelectric nature of MoS2 for odd-numbered layers. At larger applied powers, the thermal effect dominates the behavior of the two-dimensional flakes. Altogether, the work reveals several key fundamentals governing acousto-optic properties of odd-layered MoS2 that can be implemented in future optical and electronic systems.
Applied Physics Letters | 2016
Alexander Lohrmann; Stefania Castelletto; J. R. Klein; Takeshi Ohshima; Matteo Bosi; Marco Negri; Desmond W. M. Lau; Brant C. Gibson; Steven Prawer; J. C. McCallum; B. C. Johnson
In this work, we present the creation and characterisation of single photon emitters at the surface of 4H- and 6H-SiC, and of 3C-SiC epitaxially grown on silicon. These emitters can be created by annealing in an oxygen atmosphere at temperatures above 550 °C. By using standard confocal microscopy techniques, we find characteristic spectral signatures in the visible region. The excited state lifetimes are found to be in the nanosecond regime in all three polytypes, and the emission dipoles are aligned with the lattice. HF-etching is shown to effectively annihilate the defects and to restore an optically clean surface. The defects described in this work have ideal characteristics for broadband single photon generation in the visible spectral region at room temperature and for integration into nanophotonic devices.
Journal of Applied Physics | 2009
Desmond W. M. Lau; J.G. Partridge; M B Taylor; D.G. McCulloch; J. Wasyluk; T. S. Perova; David R. McKenzie
The intrinsic stress of carbon thin films deposited by filtered cathodic arc was investigated as a function of ion energy and Ar background gas pressure. The microstructure of the films was analyzed using transmission electron microscopy, electron energy loss spectroscopy, and Raman spectroscopy. The stress at given substrate bias was reduced by the presence of an Ar background gas and by the presence of a Cu underlayer deposited onto the substrate prior to deposition. Auger electron spectroscopy depth profiles showed no evidence of Ar incorporation into the films. A sharp transition from a sp 2 to sp 3 rich phase was found to occur at a stress of 6.51.5 GPa, independent of the deposition conditions. The structural transition at this value of stress is consistent with available data taken from the literature and also with the expected value of biaxial stress at the phase boundary between graphite and diamond at room temperature. The microstructure of films with stress in the transition region near 6.5 GPa was consistent with a mixture of sp 2 and sp 3 rich structures.
Scientific Reports | 2015
Asma Khalid; Kelvin Chung; Ranjith Rajasekharan; Desmond W. M. Lau; Timothy J. Karle; Brant C. Gibson; Snjezana Tomljenovic-Hanic
The negatively-charged nitrogen vacancy (NV−) center in diamond is of great interest for quantum information processing and quantum key distribution applications due to its highly desirable long coherence times at room temperature. One of the challenges for their use in these applications involves the requirement to further optimize the lifetime and emission properties of the centers. Our results demonstrate the reduction of the lifetime of NV− centers, and hence an increase in the emission rate, achieved by modifying the refractive index of the environment surrounding the nanodiamond (ND). By coating the NDs in a polymer film, experimental results and numerical calculations show an average of 63% reduction in the lifetime and an average enhancement in the emission rate by a factor of 1.6. This strategy is also applicable for emitters other than diamond color centers where the particle refractive index is greater than the refractive index of the surrounding media.
Scientific Reports | 2016
Hualin Zhan; David J. Garrett; Nicholas V. Apollo; Kumaravelu Ganesan; Desmond W. M. Lau; Steven Prawer; Jiri Cervenka
High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm3, were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail.
ACS Nano | 2017
Philipp Reineck; Desmond W. M. Lau; Emma R. Wilson; Kate Fox; Matthew R. Field; Cholaphan Deeleepojananan; Vadym Mochalin; Brant C. Gibson
Detonation nanodiamonds (DNDs) have unique physical and chemical properties that make them invaluable in many applications. However, DNDs are generally assumed to show weak fluorescence, if any, unless chemically modified with organic molecules. We demonstrate that detonation nanodiamonds exhibit significant and excitation-wavelength-dependent fluorescence from the visible to the near-infrared spectral region above 800 nm, even without the engraftment of organic molecules to their surfaces. We show that this fluorescence depends on the surface functionality of the DND particles. The investigated functionalized DNDs, produced from the same purified DND as well as the as-received polyfunctional starting material, are hydrogen, hydroxyl, carboxyl, ethylenediamine, and octadecylamine-terminated. All DNDs are investigated in solution and on a silicon wafer substrate and compared to fluorescent high-pressure high-temperature nanodiamonds. The brightest fluorescence is observed from octadecylamine-functionalized particles and is more than 100 times brighter than the least fluorescent particles, carboxylated DNDs. The majority of photons emitted by all particle types likely originates from non-diamond carbon. However, we locally find bright and photostable fluorescence from nitrogen-vacancy centers in diamond in hydrogenated, hydroxylated, and carboxylated detonation nanodiamonds. Our results contribute to understanding the effects of surface chemistry on the fluorescence of DNDs and enable the exploration of the fluorescent properties of DNDs for applications in theranostics as nontoxic fluorescent labels, sensors, nanoscale tracers, and many others where chemically stable and brightly fluorescent nanoparticles with tailorable surface chemistry are needed.
Nature Communications | 2017
Jan Jeske; Desmond W. M. Lau; Xavier Vidal; Liam P. McGuinness; Philipp Reineck; B. C. Johnson; Marcus W. Doherty; J. C. McCallum; Shinobu Onoda; Fedor Jelezko; Takeshi Ohshima; Thomas Volz; Jared H. Cole; Brant C. Gibson; Andrew D. Greentree
Stimulated emission is the process fundamental to laser operation, thereby producing coherent photon output. Despite negatively charged nitrogen-vacancy (NV−) centres being discussed as a potential laser medium since the 1980s, there have been no definitive observations of stimulated emission from ensembles of NV− to date. Here we show both theoretical and experimental evidence for stimulated emission from NV− using light in the phonon sidebands around 700 nm. Furthermore, we show the transition from stimulated emission to photoionization as the stimulating laser wavelength is reduced from 700 to 620 nm. While lasing at the zero-phonon line is suppressed by ionization, our results open the possibility of diamond lasers based on NV− centres, tuneable over the phonon sideband. This broadens the applications of NV− magnetometers from single centre nanoscale sensors to a new generation of ultra-precise ensemble laser sensors, which exploit the contrast and signal amplification of a lasing system.
APL Materials | 2013
Desmond W. M. Lau; Timothy J. Karle; B. C. Johnson; Brant C. Gibson; Snjezana Tomljenovic-Hanic; Andrew D. Greentree; Steven Prawer
We demonstrate activation of bright diamond single photon emitters in the near infrared range by thermal annealing alone, i.e., without ion implantation. The activation is crucially dependent on the annealing ambient. The activation of the single photon emitters is only observed when the sample is annealed in forming gas (4% H2 in Ar) above temperatures of 1000 °C. By contrast, no emitters are activated by annealing in vacuum, oxygen, argon or deuterium. The emitters activated by annealing in forming gas exhibit very bright emission in the 730-760 nm wavelength range and have linewidths of ∼1.5-2.5 nm at room temperature.