Despina E. Ganella
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Despina E. Ganella.
Gene Therapy | 2013
Despina E. Ganella; Gabrielle E. Callander; Sherie Ma; C R Bye; Andrew L. Gundlach; Ross A. D. Bathgate
Relaxin-3 is a neuropeptide that is abundantly expressed by discrete brainstem neuron populations that broadly innervate forebrain areas rich in the relaxin-3 G-protein-coupled-receptor, RXFP3. Acute and subchronic central administration of synthetic relaxin-3 or an RXFP3-selective agonist peptide, R3/I5, increase feeding and body weight in rats. Intrahypothalamic injection of relaxin-3 also increases feeding. In this study, we developed a recombinant adeno-associated virus 1/2 (rAAV1/2) vector that drives expression and constitutive secretion of bioactive R3/I5 and assessed the effect of intrahypothalamic injections on daily food intake and body weight gain in adult male rats over 8 weeks. In vitro testing revealed that the vector rAAV1/2-fibronectin (FIB)-R3/I5 directs the constitutive secretion of bioactive R3/I5 peptide. Bilateral injection of rAAV1/2-FIB-R3/I5 vector into the paraventricular nucleus produced an increase in daily food intake and body weight gain (P<0.01, ∼23%, respectively), relative to control treatment. In a separate cohort of rats, quantitative polymerase chain reaction analysis of hypothalamic mRNA revealed strong expression of R3/I5 transgene at 3 months post-rAAV1/2-FIB-R3/I5 infusion. Levels of mRNA transcripts for the relaxin-3 receptor RXFP3, the hypothalamic ‘feeding’ peptides neuropeptide Y, AgRP and POMC, and the reproductive hormone, GnRH, were all similar to control, whereas vasopressin and oxytocin (OT) mRNA levels were reduced by ∼25% (P=0.051) and ∼50% (P<0.005), respectively, in rAAV1/2-FIB-R3/I5-treated rats (at 12 weeks, n=9/8 rats per group). These data demonstrate for the first time that R3/I5 is effective in modulating feeding in the rat by chronic hypothalamic RXFP3 activation and suggest a potential underlying mechanism involving altered OT signalling. Importantly, there was no desensitization of the feeding response over the treatment period and no apparent deleterious health effects, indicating that targeting the relaxin-3–RXFP3 system may be an effective long-term therapy for eating disorders.
British Journal of Pharmacology | 2014
Despina E. Ganella; Jee Hyun Kim
Anxiety disorders pose one of the biggest threats to mental health in the world, and they predominantly emerge early in life. However, research of anxiety disorders and fear‐related memories during development has been largely neglected, and existing treatments have been developed based on adult models of anxiety. The present review describes animal models of anxiety disorders across development and what is currently known of their pharmacology. To summarize, the underlying mechanisms of intrinsic ‘unlearned’ fear are poorly understood, especially beyond the period of infancy. Models using ‘learned’ fear reveal that through development, rats exhibit a stress hyporesponsive period before postnatal day 10, where they paradoxically form odour‐shock preferences, and then switch to more adult‐like conditioned fear responses. Juvenile rats appear to forget these aversive associations more easily, as is observed with the phenomenon of infantile amnesia. Juvenile rats also undergo more robust extinction, until adolescence where they display increased resistance to extinction. Maturation of brain structures, such as the amygdala, prefrontal cortex and hippocampus, along with the different temporal recruitment and involvement of various neurotransmitter systems (including NMDA, GABA, corticosterone and opioids) are responsible for these developmental changes. Taken together, the studies described in this review highlight that there is a period early in development where rats appear to be more robust in overcoming adverse early life experience. We need to understand the fundamental pharmacological processes underlying anxiety early in life in order to take advantage of this period for the treatment of anxiety disorders.
Behavioural Pharmacology | 2012
Despina E. Ganella; Philip J. Ryan; Ross A. D. Bathgate; Andrew L. Gundlach
This paper provides a review of the effects of relaxin-3 and structurally related analogues on food intake and related behaviours, in relation to hypothalamic neural networks and chemical messengers known to control feeding, metabolism and body weight, including other neuropeptides and hormones. Soon after relaxin-3 was discovered, pharmacological studies identified the ability of the native peptide to stimulate feeding acutely in adult rats. Although interpretation of these data was confounded by ligand cross-reactivity at relaxin-family peptide (RXFP) receptors, studies with relaxin-3 analogues selective for the native relaxin-3 receptor, RXFP3, confirmed that acute and chronic activation of RXFP3 increased feeding and weight gain, and produced changes in plasma leptin and insulin. These studies also identified the hypothalamus as a locus of action. Studies are now required to identify RXFP3-positive neuron populations involved in the effects of relaxin-3/RXFP3 signalling on metabolic and neuroendocrine homeostasis, and to determine whether peptide-based, nonpeptide-based or gene-based RXFP3 treatments can alter food intake and body weight in animal models of obesity and eating disorders, as a reflection of the therapeutic potential of this newly identified transmitter system.
Behavioural Brain Research | 2016
Despina E. Ganella; Pushbalela Thangaraju; Andrew J. Lawrence; Jee Hyun Kim
We used pharmacological modulation of the mGlu5 receptor to investigate its role in the extinction of conditioned fear throughout development. In postnatal day (P) 17 rats, the positive allosteric modulator CDPPB facilitated, while the negative allosteric modulator MTEP impaired extinction. These drugs had no such effects on P24 or adult rats. These results establish a changing importance of mGlu5 in extinction of conditioned fear at distinct stages of development.
PLOS ONE | 2012
Gabrielle E. Callander; Sherie Ma; Despina E. Ganella; Verena C. Wimmer; Andrew L. Gundlach; Walter G. Thomas; Ross A. D. Bathgate
Relaxin-3, the most recently identified member of the relaxin peptide family, is produced by GABAergic projection neurons in the nucleus incertus (NI), in the pontine periventricular gray. Previous studies suggest relaxin-3 is a modulator of stress responses, metabolism, arousal and behavioural activation. Knockout mice and peptide infusions in vivo have significantly contributed to understanding the function of this conserved neuropeptide. Yet, a definitive role remains elusive due to discrepancies between models and a propensity to investigate pharmacological effects over endogenous function. To investigate the endogenous function of relaxin-3, we generated a recombinant adeno-associated viral (rAAV) vector expressing microRNA against relaxin-3 and validated its use to knock down relaxin-3 in adult rats. Bilateral stereotaxic infusion of rAAV1/2 EmGFP miR499 into the NI resulted in significant reductions in relaxin-3 expression as demonstrated by ablation of relaxin-3-like immunoreactivity at 3, 6 and 9 weeks and by qRT-PCR at 12 weeks. Neuronal health was unaffected as transduced neurons in all groups retained expression of NeuN and stained for Nissl bodies. Importantly, qRT-PCR confirmed that relaxin-3 receptor expression levels were not altered to compensate for reduced relaxin-3. Behavioural experiments confirmed no detrimental effects on general health or well-being and therefore several behavioural modalities previously associated with relaxin-3 function were investigated. The validation of this viral vector-based model provides a valuable alternative to existing in vivo approaches and promotes a shift towards more physiologically relevant investigations of endogenous neuropeptide function.
Annals of the New York Academy of Sciences | 2009
Brigham J. Hartley; Daniel J. Scott; Gabrielle E. Callander; Tracey N. Wilkinson; Despina E. Ganella; Chze K. Kong; Sharon Layfield; Tania Ferraro; Emma J. Petrie; Ross A. D. Bathgate
The receptors for relaxin and insulin‐like peptide 3 (INSL3) are now well‐characterized as the relaxin family peptide (RXFP) receptors RXFP1 and RXFP2, respectively. They are G‐protein‐coupled receptors (GPCRs) with closest similarity to the glycoprotein hormone receptors, with both containing large ectodomains with 10 leucine‐rich repeats (LRRs). Additionally, RXFP1 and RXFP2 are unique in the LGR family in that they contain a low‐density lipoprotein class A (LDL‐A) module at their N‐terminus. Ligand‐mediated activation of RXFP1 and RXFP2 is a complex process involving various domains of the receptors. Primary ligand binding occurs via interactions between B‐chain residues of the peptides with specific residues in the LRRs of the ectodomain. There is a secondary binding site in the transmembrane exoloops which may interact with the A chain of the peptides. Receptor signaling through cAMP then requires the unique LDL‐A module, as receptors without this domain bind ligand normally but do not signal. This is an unconventional mode of activation for a GPCR, and the precise mode of action of the LDL‐A module is currently unknown. The specific understanding of the mechanisms underlying ligand‐mediated activation of RXFP1 and RXFP2 is crucial in terms of targeting these receptors for future drug development.
Cerebral Cortex | 2016
Isabel C. Zbukvic; Despina E. Ganella; Christina J. Perry; Heather B. Madsen; Christopher R. Bye; Andrew J. Lawrence; Jee Hyun Kim
Adolescent drug users display resistance to treatment such as cue exposure therapy (CET), as well as increased liability to relapse. The basis of CET is extinction learning, which involves dopamine signaling in the medial prefrontal cortex (mPFC). This system undergoes dramatic alterations during adolescence. Therefore, we investigated extinction of a cocaine-associated cue in adolescent and adult rats. While cocaine self-administration and lever-alone extinction were not different between the two ages, we observed that cue extinction reduced cue-induced reinstatement in adult but not adolescent rats. Infusion of the selective dopamine 2 receptor (D2R)-like agonist quinpirole into the infralimbic cortex (IL) of the mPFC prior to cue extinction significantly reduced cue-induced reinstatement in adolescents. This effect was replicated by acute systemic treatment with the atypical antipsychotic aripiprazole (Abilify), a partial D2R-like agonist. These data suggest that adolescents may be more susceptible to relapse due to a deficit in cue extinction learning, and highlight the significance of D2R signaling in the IL for cue extinction during adolescence. These findings inspire new tactics for improving adolescent CET, with aripiprazole representing an exciting potential pharmacological adjunct for behavioral therapy.
Psychoneuroendocrinology | 2015
Despina E. Ganella; Nicholas B. Allen; Julian G. Simmons; Orli Schwartz; Jee Hyun Kim; Lisa Sheeber; Sarah Whittle
The pituitary gland is integral in mediating the stress-response via its role in hypothalamic-pituitary-adrenal (HPA) axis function. Pituitary gland volume (PGV) is altered in stress-related psychopathology, and one study to date has shown stress to be associated with age-related PGV change during adolescence. The current study investigated the effects of a number of different types of early life (i.e., childhood and adolescent) stress (including childhood maltreatment, stressful life events, and maternal affective behavior) on PGV development from mid- to late adolescence using a longitudinal design. The influence of PGV development on depressive and anxiety symptoms was also investigated. Ninety one (49 male) adolescents took part in mother-child dyadic interaction tasks when they were approximately 12 years old, reported on childhood maltreatment and stressful life events when they were approximately 15 years old, and underwent two waves of structural magnetic resonance imaging (MRI) scans, when they were approximately 16 and 19 years old. Results revealed that childhood maltreatment predicted accelerated PGV development in females, and maternal dysphoric behavior predicted accelerated PGV development in the whole sample. PGV development was not associated with depressive or anxiety symptoms. These results suggest an effect of early life stress on altered HPA axis function across mid- to late adolescence. Further research is required to assess functional implications and whether these changes might be associated with risk for subsequent psychopathology.
Developmental Psychobiology | 2017
Chun Hui J. Park; Despina E. Ganella; Jee Hyun Kim
We investigated whether juvenile rats do not express renewal following extinction of conditioned fear due to their inability to form a long-term contextual fear memory. In experiment 1, postnatal day (P) 18 and 25 rats received 3 white-noise and footshock pairings, followed by 60 white-noise alone presentations the next day. When tested in a different context to extinction, P25 rats displayed renewal whereas P18 rats did not. Experiments 2A and 2B surprisingly showed that P18 and P25 rats do not show differences in contextual and cued fear, regardless of the conditioning-test intervals and the number of white-noise-footshock pairings received. Finally, we observed age differences in contextual fear when P25 rats were weaned at P21 in experiment 3. These results indicate that the developmental dissociation observed in renewal of extinguished fear is not related to the widely believed late emergence of contextual fear learning.
Neurobiology of Learning and Memory | 2017
Jee Hyun Kim; Christina J. Perry; Despina E. Ganella; Heather B. Madsen
HighlightsRelapse‐resistant extinction in juvenile rodents may be due to high NMDA‐NR2B, mGlu5, and/or nicotinic receptor signaling in the amygdala.Extinction deficit in adolescence may be due to low NMDA‐NR2B, and/or low D2R relative to D1R signaling in the PFC.High corticotropin releasing factor, and/or reduced cannabinoid signaling in the amygdala may be related to impaired extinction in adolescence.Changes in the localization of oxytocin receptors in the amygdala may explain transition from effective to ineffective extinction across development. Abstract Remembering and forgetting are fundamental features of an organism. Extinction is a type of forgetting where there is a decrease in the significance and/or the meaning of an associative memory when elements of that memory no longer predict one another. The neural mechanisms underlying extinction of fear memories have been extensively studied in the laboratory because extinction processes are clinically relevant to exposure therapies that treat anxiety disorders. However, only in the last decade have we begun to unveil the similarities and differences in plasticity underlying extinction across development. So far it is clear that extinction is a developmentally dissociated process in behavior and in pharmacology, however there are many large gaps in the literature in understanding how the developmental trajectory of different neurotransmitters contribute to changes in the nature of extinction across development. We attempt to address these gaps in the present review. Major neurotransmitter systems including the glutamatergic and GABAergic systems, the monoamines, the endogenous opioid and cannabinoid systems, acetylcholines, and neuropeptides such as oxytocin have all been identified to play some role in extinction of fear memories and have been covered in this review. We hope to facilitate more research into mechanisms of extinction at different stages of life, especially noting that mental disorders are increasingly classified as neurodevelopmental disorders.