Despina Tsementzi
Georgia Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Despina Tsementzi.
PLOS ONE | 2012
Chengwei Luo; Despina Tsementzi; Nikos C. Kyrpides; Timothy D. Read; Konstantinos T. Konstantinidis
Next-generation sequencing (NGS) is commonly used in metagenomic studies of complex microbial communities but whether or not different NGS platforms recover the same diversity from a sample and their assembled sequences are of comparable quality remain unclear. We compared the two most frequently used platforms, the Roche 454 FLX Titanium and the Illumina Genome Analyzer (GA) II, on the same DNA sample obtained from a complex freshwater planktonic community. Despite the substantial differences in read length and sequencing protocols, the platforms provided a comparable view of the community sampled. For instance, derived assemblies overlapped in ∼90% of their total sequences and in situ abundances of genes and genotypes (estimated based on sequence coverage) correlated highly between the two platforms (R2>0.9). Evaluation of base-call error, frameshift frequency, and contig length suggested that Illumina offered equivalent, if not better, assemblies than Roche 454. The results from metagenomic samples were further validated against DNA samples of eighteen isolate genomes, which showed a range of genome sizes and G+C% content. We also provide quantitative estimates of the errors in gene and contig sequences assembled from datasets characterized by different levels of complexity and G+C% content. For instance, we noted that homopolymer-associated, single-base errors affected ∼1% of the protein sequences recovered in Illumina contigs of 10× coverage and 50% G+C; this frequency increased to ∼3% when non-homopolymer errors were also considered. Collectively, our results should serve as a useful practical guide for choosing proper sampling strategies and data possessing protocols for future metagenomic studies.
PLOS ONE | 2014
Rachel Poretsky; Luis M. Rodriguez-R; Chengwei Luo; Despina Tsementzi; Konstantinos T. Konstantinidis
This study explored the short-term planktonic microbial community structure and resilience in Lake Lanier (GA, USA) while simultaneously evaluating the technical aspects of identifying taxa via 16S rRNA gene amplicon and metagenomic sequence data. 16S rRNA gene amplicons generated from four temporally discrete samples were sequenced with 454 GS-FLX-Ti yielding ∼40,000 rRNA gene sequences from each sample and representing ∼300 observed OTUs. Replicates obtained from the same biological sample clustered together but several biases were observed, linked to either the PCR or sequencing-preparation steps. In comparisons with companion whole-community shotgun metagenome datasets, the estimated number of OTUs at each timepoint was concordant, but 1.5 times and ∼10 times as many phyla and genera, respectively, were identified in the metagenomes. Our analyses showed that the 16S rRNA gene captures broad shifts in community diversity over time, but with limited resolution and lower sensitivity compared to metagenomic data. We also identified OTUs that showed marked shifts in abundance over four close timepoints separated by perturbations and tracked these taxa in the metagenome vs. 16S rRNA amplicon data. A strong summer storm had less of an effect on community composition than did seasonal mixing, which revealed a distinct succession of organisms. This study provides insights into freshwater microbial communities and advances the approaches for assessing community diversity and dynamics in situ.
Applied and Environmental Microbiology | 2011
Seungdae Oh; Alejandro Caro-Quintero; Despina Tsementzi; Natasha DeLeon-Rodriguez; Chengwei Luo; Rachel Poretsky; Konstantinos T. Konstantinidis
ABSTRACT Lake Lanier is an important freshwater lake for the southeast United States, as it represents the main source of drinking water for the Atlanta metropolitan area and is popular for recreational activities. Temperate freshwater lakes such as Lake Lanier are underrepresented among the growing number of environmental metagenomic data sets, and little is known about how functional gene content in freshwater communities relates to that of other ecosystems. To better characterize the gene content and variability of this freshwater planktonic microbial community, we sequenced several samples obtained around a strong summer storm event and during the fall water mixing using a random whole-genome shotgun (WGS) approach. Comparative metagenomics revealed that the gene content was relatively stable over time and more related to that of another freshwater lake and the surface ocean than to soil. However, the phylogenetic diversity of Lake Lanier communities was distinct from that of soil and marine communities. We identified several important genomic adaptations that account for these findings, such as the use of potassium (as opposed to sodium) osmoregulators by freshwater organisms and differences in the community average genome size. We show that the lake community is predominantly composed of sequence-discrete populations and describe a simple method to assess community complexity based on population richness and evenness and to determine the sequencing effort required to cover diversity in a sample. This study provides the first comprehensive analysis of the genetic diversity and metabolic potential of a temperate planktonic freshwater community and advances approaches for comparative metagenomics.
The ISME Journal | 2012
Chengwei Luo; Despina Tsementzi; Nikos C. Kyrpides; Konstantinos T. Konstantinidis
Assembling individual genomes from complex community metagenomic data remains a challenging issue for environmental studies. We evaluated the quality of genome assemblies from community short read data (Illumina 100 bp pair-ended sequences) using datasets recovered from freshwater and soil microbial communities as well as in silico simulations. Our analyses revealed that the genome of a single genotype (or species) can be accurately assembled from a complex metagenome when it shows at least about 20 × coverage. At lower coverage, however, the derived assemblies contained a substantial fraction of non-target sequences (chimeras), which explains, at least in part, the higher number of hypothetical genes recovered in metagenomic relative to genomic projects. We also provide examples of how to detect intrapopulation structure in metagenomic datasets and estimate the type and frequency of errors in assembled genes and contigs from datasets of varied species complexity.
Nature | 2016
Despina Tsementzi; Jieying Wu; Samuel Deutsch; Sangeeta Nath; Luis M. Rodriguez-R; Andrew S. Burns; Piyush Ranjan; Neha Sarode; Rex R. Malmstrom; Cory C. Padilla; Benjamin Stone; Laura A. Bristow; Morten Larsen; Jennifer B. Glass; Bo Thamdrup; Tanja Woyke; Konstantinos T. Konstantinidis; Frank J. Stewart
Bacteria of the SAR11 clade constitute up to one half of all microbial cells in the oxygen-rich surface ocean. SAR11 bacteria are also abundant in oxygen minimum zones (OMZs), where oxygen falls below detection and anaerobic microbes have vital roles in converting bioavailable nitrogen to N2 gas. Anaerobic metabolism has not yet been observed in SAR11, and it remains unknown how these bacteria contribute to OMZ biogeochemical cycling. Here, genomic analysis of single cells from the world’s largest OMZ revealed previously uncharacterized SAR11 lineages with adaptations for life without oxygen, including genes for respiratory nitrate reductases (Nar). SAR11 nar genes were experimentally verified to encode proteins catalysing the nitrite-producing first step of denitrification and constituted ~40% of OMZ nar transcripts, with transcription peaking in the anoxic zone of maximum nitrate reduction activity. These results link SAR11 to pathways of ocean nitrogen loss, redefining the ecological niche of Earth’s most abundant organismal group.
Applied and Environmental Microbiology | 2014
Seungdae Oh; Zohre Kurt; Despina Tsementzi; Michael R. Weigand; Minjae Kim; Janet K. Hatt; Madan Tandukar; Spyros G. Pavlostathis; Jim C. Spain; Konstantinos T. Konstantinidis
ABSTRACT Benzalkonium chlorides (BACs) are disinfectants widely used in a variety of clinical and environmental settings to prevent microbial infections, and they are frequently detected in nontarget environments, such as aquatic and engineered biological systems, even at toxic levels. Therefore, microbial degradation of BACs has important ramifications for alleviating disinfectant toxicity in nontarget environments as well as compromising disinfectant efficacy in target environments. However, how natural microbial communities respond to BAC exposure and what genes underlie BAC biodegradation remain elusive. Our previous metagenomic analysis of a river sediment microbial community revealed that BAC exposure selected for a low-diversity community, dominated by several members of the Pseudomonas genus that quickly degraded BACs. To elucidate the genetic determinants of BAC degradation, we conducted time-series metatranscriptomic analysis of this microbial community during a complete feeding cycle with BACs as the sole carbon and energy source under aerobic conditions. Metatranscriptomic profiles revealed a candidate gene for BAC dealkylation, the first step in BAC biodegradation that results in a product 500 times less toxic. Subsequent biochemical assays and isolate characterization verified that the putative amine oxidase gene product was functionally capable of initiating BAC degradation. Our analysis also revealed cooperative interactions among community members to alleviate BAC toxicity, such as the further degradation of BAC dealkylation by-products by organisms not encoding amine oxidase. Collectively, our results advance the understanding of BAC aerobic biodegradation and provide genetic biomarkers to assess the critical first step of this process in nontarget environments.
Environmental Microbiology Reports | 2014
Despina Tsementzi; Rachel Poretsky; Luis M. Rodriguez-R; Chengwei Luo; Konstantinos T. Konstantinidis
Metatranscriptomics of environmental samples enables the identification of community activities without a priori knowledge of taxonomic or functional composition. However, several technical challenges associated with the RNA preparation protocols can affect the relative representation of transcripts and data interpretation. Here, seven replicate metatranscriptomes from planktonic freshwater samples (Lake Lanier, USA) were sequenced to evaluate technical and biological reproducibility of different RNA extraction protocols. Organic versus bead-beating extraction showed significant enrichment for low versus high G + C% mRNA populations respectively. The sequencing data were best modelled by a negative binomial distribution to account for the large technical and biological variation observed. Despite the variation, the transcriptional activities of populations that persisted in year-round metagenomes from the same site consistently showed distinct expression patterns, reflecting different ecologic strategies and allowing us to test prevailing models on the contribution of both rare biosphere and abundant members to community activity. For instance, abundant members of the Verrucomicrobia phylum systematically showed low transcriptional activity compared with other abundant taxa. Our results provide a practical guide to the analysis of metatranscriptomes and advance understanding of the activity and ecology of abundant and rare members of temperate freshwater microbial communities.
Environmental Microbiology | 2016
Alexandra Meziti; Despina Tsementzi; Konstantinos Ar. Kormas; Hera Karayanni; Konstantinos T. Konstantinidis
Studies assessing the effects of anthropogenic inputs on the taxonomic and functional diversity of bacterioplankton communities in lotic ecosystems are limited. Here, we applied 16S rRNA gene amplicon and whole-genome shotgun sequencing to examine the microbial diversity in samples from the Kalamas River (Northwest Greece), a mid-size river that runs through agricultural and NATURA-protected areas, but also receives urban sewage from a large city through a manmade ditch. Samples from three different locations between the exit of the ditch and the estuary, during three different months showed that temporal differences of taxonomic and functional diversity were more pronounced than spatial ones, and <1% of total taxa were shared among all samples, revealing a highly dynamic ecosystem. Comparisons of gene diversity with other aquatic habitats showed that only the high flow winter samples resembled more to freshwater environments while samples during the decreased water flow months were dominated by sewage inputs and soil-related organisms. Notably, microbial human gut signals were detectable over background freshwater and soil/runoff related signals, even at tens of kilometers downstream the city. These findings revealed the significance of allochthonous inputs on the composition and dynamics of river bacterial communities, and highlighted the potential of metagenomics for source tracking purposes.
Applied and Environmental Microbiology | 2017
Yuanqi Wang; Janet K. Hatt; Despina Tsementzi; Luis M. Rodriguez-R; Carlos A. Ruiz-Pérez; Michael R. Weigand; Heidi Kizer; Gina Maresca; Raj Krishnan; Rachel Poretsky; Jim C. Spain; Konstantinos T. Konstantinidis
ABSTRACT A single liter of water contains hundreds, if not thousands, of bacterial and archaeal species, each of which typically makes up a very small fraction of the total microbial community (<0.1%), the so-called “rare biosphere.” How often, and via what mechanisms, e.g., clonal amplification versus horizontal gene transfer, the rare taxa and genes contribute to microbial community response to environmental perturbations represent important unanswered questions toward better understanding the value and modeling of microbial diversity. We tested whether rare species frequently responded to changing environmental conditions by establishing 20-liter planktonic mesocosms with water from Lake Lanier (Georgia, USA) and perturbing them with organic compounds that are rarely detected in the lake, including 2,4-dichlorophenoxyacetic acid (2,4-D), 4-nitrophenol (4-NP), and caffeine. The populations of the degraders of these compounds were initially below the detection limit of quantitative PCR (qPCR) or metagenomic sequencing methods, but they increased substantially in abundance after perturbation. Sequencing of several degraders (isolates) and time-series metagenomic data sets revealed distinct cooccurring alleles of degradation genes, frequently carried on transmissible plasmids, especially for the 2,4-D mesocosms, and distinct species dominating the post-enrichment microbial communities from each replicated mesocosm. This diversity of species and genes also underlies distinct degradation profiles among replicated mesocosms. Collectively, these results supported the hypothesis that the rare biosphere can serve as a genetic reservoir, which can be frequently missed by metagenomics but enables community response to changing environmental conditions caused by organic pollutants, and they provided insights into the size of the pool of rare genes and species. IMPORTANCE A single liter of water or gram of soil contains hundreds of low-abundance bacterial and archaeal species, the so called rare biosphere. The value of this astonishing biodiversity for ecosystem functioning remains poorly understood, primarily due to the fact that microbial community analysis frequently focuses on abundant organisms. Using a combination of culture-dependent and culture-independent (metagenomics) techniques, we showed that rare taxa and genes commonly contribute to the microbial community response to organic pollutants. Our findings should have implications for future studies that aim to study the role of rare species in environmental processes, including environmental bioremediation efforts of oil spills or other contaminants.
Genome Announcements | 2016
Sara Kleindienst; Steven A. Higgins; Despina Tsementzi; Konstantinos T. Konstantinidis; E. Erin Mack; Frank E. Löffler
ABSTRACT An anaerobic, dichloromethane-degrading bacterium affiliated with novel Peptococcaceae was maintained in a microbial consortium. The organism originated from pristine freshwater sediment collected from Rio Mameyes in Luquillo, Puerto Rico, in October 2009 (latitude 18°21′43.9″, longitude −65°46′8.4″). The draft genome sequence is 2.1 Mb and has a G+C content of 43.5%.