Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dessislava Marinova is active.

Publication


Featured researches published by Dessislava Marinova.


Vaccine | 2013

Construction, characterization and preclinical evaluation of MTBVAC, the first live-attenuated M. tuberculosis-based vaccine to enter clinical trials

Ainhoa Arbués; Juan Ignacio Aguiló; Jesús Gonzalo-Asensio; Dessislava Marinova; Santiago Uranga; Eugenia Puentes; Conchita Fernandez; Alberto Parra; P. J. Cardona; C. Vilaplana; Vicente Ausina; Ann Williams; Simon O. Clark; Wladimir Malaga; Christophe Guilhot; Brigitte Gicquel; Carlos Martín

The development of a new tuberculosis vaccine is an urgent need due to the failure of the current vaccine, BCG, to protect against the respiratory form of the disease. MTBVAC is an attenuated Mycobacterium tuberculosis vaccine candidate genetically engineered to fulfil the Geneva consensus requirements to enter human clinical trials. We selected a M. tuberculosis clinical isolate to generate two independent deletions without antibiotic-resistance markers in the genes phoP, coding for a transcription factor key for the regulation of M. tuberculosis virulence, and fadD26, essential for the synthesis of the complex lipids phthiocerol dimycocerosates (DIM), one of the major mycobacterial virulence factors. The resultant strain MTBVAC exhibits safety and biodistribution profiles similar to BCG and confers superior protection in preclinical studies. These features have enabled MTBVAC to be the first live attenuated M. tuberculosis vaccine to enter clinical evaluation.


Cellular Microbiology | 2013

ESX‐1‐induced apoptosis is involved in cell‐to‐cell spread of Mycobacterium tuberculosis

Juan Ignacio Aguiló; Henar Alonso; Santiago Uranga; Dessislava Marinova; Ainhoa Arbués; A. de Martino; Alberto Anel; Marta Monzón; Juan José Badiola; Julián Pardo; Roland Brosch; Carlos Martín

Apoptosis modulation is a procedure amply utilized by intracellular pathogens to favour the outcome of the infection. Nevertheless, the role of apoptosis during infection with Mycobacterium tuberculosis, the causative agent of human tuberculosis, is subject of an intense debate and still remains unclear. In this work, we describe that apoptosis induction in host cells is clearly restricted to virulent M. tuberculosis strains, and is associated with the capacity of the mycobacteria to secrete the 6 kDa early secreted antigenic target ESAT‐6 bothunder in vitro and in vivo conditions. Remarkably, only apoptosis‐inducing strains are able to propagate infection into new cells, suggesting that apoptosis is used by M. tuberculosis as a colonization mechanism. Finally, we demonstrate that in vitro modulation of apoptosis affects mycobacterial cell‐to‐cell spread capacity, establishing an unambiguous relationship between apoptosis and propagation of M. tuberculosis. Our data further indicate that BCG and MTBVAC vaccines are inefficient in inducing apoptosis and colonizing new cells, correlating with the strong attenuation profile of these strains previously observed in vitro and in vivo.


The Lancet Respiratory Medicine | 2015

Safety of human immunisation with a live-attenuated Mycobacterium tuberculosis vaccine: a randomised, double-blind, controlled phase I trial

François Spertini; Régine Audran; Reza Chakour; Olfa Karoui; Viviane Steiner-Monard; Anne-Christine Thierry; Carole Mayor; Nils Rettby; Katia Jaton; Laure Vallotton; Catherine Lazor-Blanchet; Juana Doce; Eugenia Puentes; Dessislava Marinova; Nacho Aguilo; Carlos Martín

BACKGROUND Tuberculosis remains one of the worlds deadliest transmissible diseases despite widespread use of the BCG vaccine. MTBVAC is a new live tuberculosis vaccine based on genetically attenuated Mycobacterium tuberculosis that expresses most antigens present in human isolates of M tuberculosis. We aimed to compare the safety of MTBVAC with BCG in healthy adult volunteers. METHODS We did this single-centre, randomised, double-blind, controlled phase 1 study at the Centre Hospitalier Universitaire Vaudois (CHUV; Lausanne, Switzerland). Volunteers were eligible for inclusion if they were aged 18-45 years, clinically healthy, HIV-negative and tuberculosis-negative, and had no history of active tuberculosis, chemoprophylaxis for tuberculosis, or BCG vaccination. Volunteers fulfilling the inclusion criteria were randomly assigned to three cohorts in a dose-escalation manner. Randomisation was done centrally by the CHUV Pharmacy and treatments were masked from the study team and volunteers. As participants were recruited within each cohort, they were randomly assigned 3:1 to receive MTBVAC or BCG. Of the participants allocated MTBVAC, those in the first cohort received 5 × 10(3) colony forming units (CFU) MTBVAC, those in the second cohort received 5 × 10(4) CFU MTBVAC, and those in the third cohort received 5 × 10(5) CFU MTBVAC. In all cohorts, participants assigned to receive BCG were given 5 × 10(5) CFU BCG. Each participant received a single intradermal injection of their assigned vaccine in 0·1 mL sterile water in their non-dominant arm. The primary outcome was safety in all vaccinated participants. Secondary outcomes included whole blood cell-mediated immune response to live MTBVAC and BCG, and interferon γ release assays (IGRA) of peripheral blood mononuclear cells. This trial is registered with ClinicalTrials.gov, number NCT02013245. FINDINGS Between Jan 23, 2013, and Nov 6, 2013, we enrolled 36 volunteers into three cohorts, each of which consisted of nine participants who received MTBVAC and three who received BCG. 34 volunteers completed the trial. The safety of vaccination with MTBVAC at all doses was similar to that of BCG, and vaccination did not induce any serious adverse events. All individuals were IGRA negative at the end of follow-up (day 210). After whole blood stimulation with live MTBVAC or BCG, MTBVAC was at least as immunogenic as BCG. At the same dose as BCG (5×10(5) CFU), although no statistical significance could be achieved, there were more responders in the MTBVAC group than in the BCG group, with a greater frequency of polyfunctional CD4+ central memory T cells. INTERPRETATION To our knowledge, MTBVAC is the first live-attenuated M tuberculosis vaccine to reach clinical assessment, showing similar safety to BCG. MTBVAC seemed to be at least as immunogenic as BCG, but the study was not powered to investigate this outcome. Further plans to use more immunogenicity endpoints in a larger number of volunteers (adults and adolescents) are underway, with the aim to thoroughly characterise and potentially distinguish immunogenicity between MTBVAC and BCG in tuberculosis-endemic countries. Combined with an excellent safety profile, these data support advanced clinical development in high-burden tuberculosis endemic countries. FUNDING Biofabri and Bill & Melinda Gates Foundation through the TuBerculosis Vaccine Initiative (TBVI).


PLOS ONE | 2012

Attenuated Mycobacterium tuberculosis SO2 Vaccine Candidate Is Unable to Induce Cell Death

Adriana Aporta; Ainhoa Arbués; Juan Ignacio Aguiló; Marta Monzón; Juan José Badiola; Alba de Martino; Nadia L. Ferrer; Dessislava Marinova; Alberto Anel; Carlos Martín; Julián Pardo

It has been proposed that Mycobacterium tuberculosis virulent strains inhibit apoptosis and trigger cell death by necrosis of host macrophages to evade innate immunity, while non-virulent strains induce typical apoptosis activating a protective host response. As part of the characterization of a novel tuberculosis vaccine candidate, the M. tuberculosis phoP mutant SO2, we sought to evaluate its potential to induce host cell death. The parental M. tuberculosis MT103 strain and the current vaccine against tuberculosis Bacillus Calmette-Guérin (BCG) were used as comparators in mouse models in vitro and in vivo. Our data reveal that attenuated SO2 was unable to induce apoptotic events neither in mouse macrophages in vitro nor during lung infection in vivo. In contrast, virulent MT103 triggers typical apoptotic events with phosphatidylserine exposure, caspase-3 activation and nuclear condensation and fragmentation. BCG strain behaved like SO2 and did not induce apoptosis. A clonogenic survival assay confirmed that viability of BCG- or SO2-infected macrophages was unaffected. Our results discard apoptosis as the protective mechanism induced by SO2 vaccine and provide evidence for positive correlation between classical apoptosis induction and virulent strains, suggesting apoptosis as a possible virulence determinant during M. tuberculosis infection.


The Journal of Infectious Diseases | 2016

Pulmonary but Not Subcutaneous Delivery of BCG Vaccine Confers Protection to Tuberculosis-Susceptible Mice by an Interleukin 17–Dependent Mechanism

Nacho Aguilo; Samuel Álvarez-Arguedas; Santiago Uranga; Dessislava Marinova; Marta Monzón; Juan José Badiola; Carlos Martín

Some of the most promising novel tuberculosis vaccine strategies currently under development are based on respiratory vaccination, mimicking the natural route of infection. In this work, we have compared pulmonary and subcutaneous delivery of BCG vaccine in the tuberculosis-susceptible DBA/2 mouse strain, a model in which parenterally administered BCG vaccine does not protect against tuberculosis. Our data show that intranasally but not subcutaneously administered BCG confers robust protection against pulmonary tuberculosis challenge. In addition, our results indicate that pulmonary vaccination triggers a Mycobacterium tuberculosis-specific mucosal immune response orchestrated by interleukin 17A (IL-17A). Thus, IL-17A neutralization in vivo reduces protection and abrogates M. tuberculosis-specific immunoglobulin A (IgA) secretion to respiratory airways and lung expression of polymeric immunoglobulin receptor induced following intranasal vaccination. Together, our results demonstrate that pulmonary delivery of BCG can overcome the lack of protection observed when BCG is given parenterally, suggesting that respiratory tuberculosis vaccines could have an advantage in tuberculosis-endemic countries, where intradermally administered BCG has inefficient effectiveness against pulmonary tuberculosis.


Frontiers in Cellular and Infection Microbiology | 2013

ESX-1-induced apoptosis during mycobacterial infection: to be or not to be, that is the question

Nacho Aguilo; Dessislava Marinova; Carlos Martín; Julián Pardo

The major Mycobacterium tuberculosis virulence factor ESAT-6 exported by the ESX-1 secretion system has been described as a pro-apoptotic factor by several independent groups in recent years, sustaining a role for apoptosis in M. tuberculosis pathogenesis. This role has been supported by independent studies in which apoptosis has been shown as a hallmark feature in human and mouse lungs infected with virulent strains. Nevertheless, the role of apoptosis during mycobacterial infection is subject to an intense debate. Several works maintain that apoptosis is more evident with attenuated strains, whereas virulent mycobacteria tend to inhibit this process, suggesting that apoptosis induction may be a host mechanism to control infection. In this review, we summarize the evidences that support the involvement of ESX-1-induced apoptosis in virulence, intending to provide a rational treatise for the role of programmed cell death during M. tuberculosis infection.


Tuberculosis | 2016

MTBVAC vaccine is safe, immunogenic and confers protective efficacy against Mycobacterium tuberculosis in newborn mice.

Nacho Aguilo; Santiago Uranga; Dessislava Marinova; Marta Monzón; Juan José Badiola; Carlos Martín

Summary Development of novel more efficient preventive vaccines against tuberculosis (TB) is crucial to achieve TB eradication by 2050, one of the Millennium Development Goals (MDG) for the current century. MTBVAC is the first and only live attenuated vaccine based on a human isolate of Mycobacterium tuberculosis developed as BCG-replacement strategy in newborns that has entered first-in-human adult clinical trials. In this work, we characterize the safety, immunogenicity and protective efficacy of MTBVAC in a model of newborn C57/BL6 mice. Our data clearly indicate that MTBVAC is safe for newborn mice, and does not affect animal growth or organ development. In addition, MTBVAC-vaccinated mice at birth showed enhanced immunogenicity and better protection against M. tuberculosis challenge in comparison with BCG.


Cell Death and Disease | 2014

Bim is a crucial regulator of apoptosis induced by Mycobacterium tuberculosis.

Nacho Aguilo; Santiago Uranga; Dessislava Marinova; Carlos Martín; Julián Pardo

Mycobacterium tuberculosis, the causative agent of tuberculosis, induces apoptosis in infected macrophages in vitro and in vivo. However, the molecular mechanism controlling this process is not known. In order to study the involvement of the mitochondrial apoptotic pathway in M. tuberculosis-induced apoptosis, we analysed cell death in M. tuberculosis-infected embryonic fibroblasts (MEFs) derived from different knockout mice for genes involved in this route. We found that apoptosis induced by M. tuberculosis is abrogated in the absence of Bak and Bax, caspase 9 or the executioner caspases 3 and 7. Notably, we show that MEF deficient in the BH3-only BCL-2-interacting mediator of cell death (Bim) protein were also resistant to this process. The relevance of these results has been confirmed in the mouse macrophage cell line J774, where cell transfection with siRNA targeting Bim impaired apoptosis induced by virulent mycobacteria. Notably, only infection with a virulent strain, but not with attenuated ESX-1-defective strains, such as Bacillus Calmette-Guerin and live-attenuated M. tuberculosis vaccine strain MTBVAC, induced Bim upregulation and apoptosis, probably implicating virulence factor early secreted antigenic target 6-kDa protein in this process. Our results suggest that Bim upregulation and apoptosis is mediated by the p38MAPK-dependent pathway. Our findings show that Bim is a master regulator of apoptosis induced by M. tuberculosis.


Nature Communications | 2017

Reactogenicity to major tuberculosis antigens absent in BCG is linked to improved protection against Mycobacterium tuberculosis

Nacho Aguilo; Jesús Gonzalo-Asensio; Samuel Álvarez-Arguedas; Dessislava Marinova; Ana B. Gomez; Santiago Uranga; Ralf Spallek; Mahavir Singh; Régine Audran; François Spertini; Carlos Martín

MTBVAC is a live-attenuated Mycobacterium tuberculosis vaccine, currently under clinical development, that contains the major antigens ESAT6 and CFP10. These antigens are absent from the current tuberculosis vaccine, BCG. Here we compare the protection induced by BCG and MTBVAC in several mouse strains that naturally express different MHC haplotypes differentially recognizing ESAT6 and CFP10. MTBVAC induces improved protection in C3H mice, the only of the three tested strains reactive to both ESAT6 and CFP10. Deletion of both antigens in MTBVAC reduces its efficacy to BCG levels, supporting a link between greater efficacy and CFP10- and ESAT6-specific reactogenicity. In addition, MTBVAC (but not BCG) triggers a specific response in human vaccinees against ESAT6 and CFP10. Our results warrant further exploration of this response as potential biomarker of protection in MTBVAC clinical trials.


The Journal of Infectious Diseases | 2017

Revaccination of Guinea Pigs With the Live Attenuated Mycobacterium tuberculosis Vaccine MTBVAC Improves BCG's Protection Against Tuberculosis

Simon O. Clark; Faye Lanni; Dessislava Marinova; Emma Rayner; Carlos Martín; Ann Williams

Background The need for an effective vaccine against human tuberculosis has driven the development of different candidates and vaccination strategies. Novel live attenuated vaccines are being developed that promise greater safety and efficacy than BCG against tuberculosis. We combined BCG with the vaccine MTBVAC to evaluate whether the efficacy of either vaccine would be affected upon revaccination. Methods In a well-established guinea pig model of aerosol infection with Mycobacterium tuberculosis, BCG and MTBVAC delivered via various prime-boost combinations or alone were compared. Efficacy was determined by a reduction in bacterial load 4 weeks after challenge. Results Efficacy data suggests MTBVAC-associated immunity is longer lasting than that of BCG when given as a single dose. Long and short intervals between BCG prime and MTBVAC boost resulted in improved efficacy in lungs, compared with BCG given alone. A shorter interval between MTBVAC prime and BCG boost resulted in improved efficacy in lungs, compared with BCG given alone. A longer interval resulted in protection equivalent to that of BCG given alone. Conclusions These data indicate that, rather than boosting the waning efficacy of BCG, a vaccination schedule involving a combination of the 2 vaccines yielded stronger immunity to M. tuberculosis infection. This work supports development of MTBVAC use as a revaccination strategy to improve on the effects of BCG in vaccinated people living in tuberculosis-endemic countries.

Collaboration


Dive into the Dessislava Marinova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nacho Aguilo

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Santiago Uranga

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J C Sanz

University of Zaragoza

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge