Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Detlef Balschun is active.

Publication


Featured researches published by Detlef Balschun.


Nature | 2012

Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2

Michael J. Schmeisser; Elodie Ey; Stephanie Wegener; Juergen Bockmann; A. Vanessa Stempel; Angelika Kuebler; Anna-Lena Janssen; Patrick T Udvardi; Ehab Shiban; Christina Spilker; Detlef Balschun; Boris V. Skryabin; Susanne tom Dieck; Karl-Heinz Smalla; Dirk Montag; Claire S. Leblond; Philippe Faure; Nicolas Torquet; Anne-Marie Le Sourd; Roberto Toro; Andreas M. Grabrucker; Sarah A. Shoichet; Dietmar Schmitz; Michael R. Kreutz; Thomas Bourgeron; Eckart D. Gundelfinger; Tobias M. Boeckers

Autism spectrum disorders comprise a range of neurodevelopmental disorders characterized by deficits in social interaction and communication, and by repetitive behaviour. Mutations in synaptic proteins such as neuroligins, neurexins, GKAPs/SAPAPs and ProSAPs/Shanks were identified in patients with autism spectrum disorder, but the causative mechanisms remain largely unknown. ProSAPs/Shanks build large homo- and heteromeric protein complexes at excitatory synapses and organize the complex protein machinery of the postsynaptic density in a laminar fashion. Here we demonstrate that genetic deletion of ProSAP1/Shank2 results in an early, brain-region-specific upregulation of ionotropic glutamate receptors at the synapse and increased levels of ProSAP2/Shank3. Moreover, ProSAP1/Shank2−/− mutants exhibit fewer dendritic spines and show reduced basal synaptic transmission, a reduced frequency of miniature excitatory postsynaptic currents and enhanced N-methyl-d-aspartate receptor-mediated excitatory currents at the physiological level. Mutants are extremely hyperactive and display profound autistic-like behavioural alterations including repetitive grooming as well as abnormalities in vocal and social behaviours. By comparing the data on ProSAP1/Shank2−/− mutants with ProSAP2/Shank3αβ−/− mice, we show that different abnormalities in synaptic glutamate receptor expression can cause alterations in social interactions and communication. Accordingly, we propose that appropriate therapies for autism spectrum disorders are to be carefully matched to the underlying synaptopathic phenotype.


The FASEB Journal | 2004

Interleukin-6: a cytokine to forget

Detlef Balschun; Wolfram Wetzel; A del Rey; F Pitossi; H Schneider; Werner Zuschratter; Hugo O. Besedovsky

It is known that proinflammatory cytokines such as interleukin‐6 (IL‐6) are expressed in the central nervous system (CNS) during disease conditions and affect several brain functions including memory and learning. In contrast to these effects observed during pathological conditions, here we describe a physiological function of IL‐6 in the “healthy” brain in synaptic plasticity and memory consolidation. During long‐term potentiation (LTP) in vitro and in freely moving rats, IL‐6 gene expression in the hippocampus was substantially increased. This increase was long lasting, specific to potentiation, and was prevented by inhibition of N‐methyl‐D‐aspartate receptors with (±)‐2‐amino‐5‐phosphonopentanoic acid (AP‐5). Blockade of endogenous IL‐6 by application of a neutralizing anti‐IL6 antibody 90 min after tetanus caused a remarkable prolongation of LTP. Consistently, blockade of endogenous IL‐6, 90 min after hippocampus‐dependent spatial alternation learning resulted in a significant improvement of long‐term memory. In view of the suggested role of LTP in memory formation, these data implicate IL‐6 in the mechanisms controlling the kinetics and amount of information storage.


The Journal of Neuroscience | 2011

Tau-Induced Defects in Synaptic Plasticity, Learning, and Memory Are Reversible in Transgenic Mice after Switching Off the Toxic Tau Mutant

Astrid Sydow; Anneke Van der Jeugd; Fang Zheng; Tariq Ahmed; Detlef Balschun; Olga Petrova; Dagmar Drexler; Lepu Zhou; Gabriele M. Rune; Eckhard Mandelkow; Rudi D'Hooge; Christian Alzheimer; Eva-Maria Mandelkow

This report describes the behavioral and electrophysiological analysis of regulatable transgenic mice expressing mutant repeat domains of human Tau (TauRD). Mice were generated to express TauRD in two forms, differing in their propensity for β-structure and thus in their tendency for aggregation (“pro-aggregant” or “anti-aggregant”) (Mocanu et al., 2008). Only pro-aggregant mice show pronounced changes typical for Tau pathology in Alzheimers disease (aggregation, missorting, hyperphosphorylation, synaptic and neuronal loss), indicating that the β-propensity and hence the ability to aggregate is a key factor in the disease. We now tested the mice with regard to neuromotor parameters, behavior, learning and memory, and synaptic plasticity and correlated this with histological and biochemical parameters in different stages of switching TauRD on or off. The mice are normal in neuromotor tests. However, pro-aggregant TauRD mice are strongly impaired in memory and show pronounced loss of long-term potentiation (LTP), suggesting that Tau aggregation specifically perturbs these brain functions. Remarkably, when the expression of human pro-aggregant TauRD is switched on for ∼10 months and off for ∼4 months, memory and LTP recover, whereas aggregates decrease moderately and change their composition from mixed human plus mouse Tau to mouse Tau only. Neuronal loss persists, but synapses are partially rescued. This argues that continuous presence of amyloidogenic pro-aggregant TauRD constitutes the main toxic insult for memory and LTP, rather than the aggregates as such.


The Journal of Neuroscience | 2004

Neurogranin/RC3 Enhances Long-Term Potentiation and Learning by Promoting Calcium-Mediated Signaling

Kuo-Ping Huang; Freesia L. Huang; Tino Jäger; Junfa Li; Klaus G. Reymann; Detlef Balschun

In neurons, neurogranin (Ng) binds calmodulin (CaM), and its binding affinity is reduced by increasing Ca2+, phosphorylation by PKC, or oxidation by oxidants. Ng concentration in the hippocampus of adult mice varied broadly (Ng+/+, ∼160-370 and Ng+/-, ∼70-230 pmol/mg); the level in Ng+/+ mice is one of the highest among all neuronal CaM-binding proteins. Among Ng+/- mice, but less apparent in Ng+/+, a significant relationship existed between their hippocampal levels of Ng and performances in the Morris water maze. Ng-/- mice performed poorly in this task; they also displayed deficits in high-frequency-induced long-term potentiation (LTP) in area CA1 of hippocampal slices, whereas low-frequency-induced long-term depression was enhanced. Thus, compared with Ng+/+ mice, the frequency-response curve of Ng-/- shifted to the right. Paired-pulse facilitation and synaptic fatigue during prolonged stimulation at 10 Hz (900 pulses) were unchanged in Ng-/- slices, indicating their normal presynaptic function. Measurements of Ca2+ transients in CA1 pyramidal neurons after weak and strong tetanic stimulations (100 Hz, 400 and 1000 msec, respectively) revealed a significantly greater intracellular Ca2+ ([Ca2+]i) response in Ng+/+ compared with Ng-/- mice, but the decay time constants did not differ. The diminished Ca2+ dynamics in Ng-/- mice are a likely cause of their decreased propensity to undergo LTP. Thus, Ng may promote a high [Ca2+]i by a “mass-action” mechanism; namely, the higher the Ng concentration, the more Ng-CaM complexes will be formed, which effectively raises [Ca2+]i at any given Ca2+ influx. This mechanism provides potent signal amplification in enhancing synaptic plasticity as well as learning and memory.


Brain Behavior and Immunity | 2013

A cytokine network involving brain-borne IL-1β, IL-1ra, IL-18, IL-6, and TNFα operates during long-term potentiation and learning

Adriana del Rey; Detlef Balschun; Wolfram Wetzel; Anke Randolf; Hugo O. Besedovsky

We have previously shown that long-term potentiation (LTP) induces hippocampal IL-1β and IL-6 over-expression, and interfering their signalling either inhibits or supports, respectively, LTP maintenance. Consistently, blockade of endogenous IL-1 or IL-6 restricts or favours hippocampal-dependent memory, effects that were confirmed in genetically manipulated mice. Since cytokines are known for their high degree of mutual crosstalk, here we studied whether a network of cytokines with known neuromodulatory actions is activated during LTP and learning. We found that, besides IL-1β and IL-6, also IL-1 receptor antagonist (IL-1ra) and IL-18, but not TNFα are over-expressed during LTP maintenance in freely moving rats. The increased expression of these cytokines is causally related to an increase in synaptic strength since it was abrogated when LTP was interfered by blockade of NMDA-glutamate receptors. Likewise, IL-1 and IL-6 were found to be over-expressed in defined regions of the hippocampus during learning a hippocampus-dependent task. However, during learning, changes in IL-18 were restricted to the dorsal hippocampus, and no differences in TNFα and IL1-ra expression were noticed in the hippocampus. Noticeably, IL-1ra transcripts were significantly reduced in the prefrontal cortex. The relation between cytokine expression and learning was causal because such changes were not observed in animals from a pseudo-trained group that was subject to the same manipulation but could not learn the task. Taken together with previous studies, we conclude that activation of a cytokine network in the brain is a physiologic relevant phenomenon not only for LTP maintenance but also for certain types of learning.


Cerebral Cortex | 2010

Vesicular Glutamate Transporter VGLUT1 Has a Role in Hippocampal Long-Term Potentiation and Spatial Reversal Learning

Detlef Balschun; Diederik Moechars; Zsuzsanna Callaerts-Vegh; Ben Vermaercke; Nathalie Van Acker; Luc Andries; Rudi D'Hooge

Vesicular glutamate transporters 1 and 2 (VGLUT1, VGLUT2) show largely complementary distribution in the mature rodent brain and tend to segregate to synapses with different physiological properties. In the hippocampus, VGLUT1 is the dominate subtype in adult animals, whereas VGLUT2 is transiently expressed during early postnatal development. We generated and characterized VGLUT1 knockout mice in order to examine the functional contribution of this transporter to hippocampal synaptic plasticity and hippocampus-dependent spatial learning. Because complete deletion of VGLUT1 resulted in postnatal lethality, we used heterozygous animals for analysis. Here, we report that deletion of VGLUT1 resulted in impaired hippocampal long-term potentiation (LTP) in the CA1 region in vitro. In contrast, heterozygous VGLUT2 mice that were investigated for comparison did not show any changes in LTP. The reduced ability of VGLUT1-deficient mice to express LTP was accompanied by a specific deficit in spatial reversal learning in the water maze. Our data suggest a functional role of VGLUT1 in forms of hippocampal synaptic plasticity that are required to adapt and modify acquired spatial maps to external stimuli and changes.


The Journal of Neuroscience | 2008

Spred1 Is Required for Synaptic Plasticity and Hippocampus-Dependent Learning

Ellen Denayer; Tariq Ahmed; Hilde Brems; Geeske M. van Woerden; Nils Zuiderveen Borgesius; Zsuzsanna Callaerts-Vegh; Akihiko Yoshimura; Dieter Hartmann; Ype Elgersma; Rudi D'Hooge; Eric Legius; Detlef Balschun

Germline mutations in SPRED1, a negative regulator of Ras, have been described in a neurofibromatosis type 1 (NF1)-like syndrome (NFLS) that included learning difficulties in some affected individuals. NFLS belongs to the group of phenotypically overlapping neuro-cardio-facial-cutaneous syndromes that are all caused by germ line mutations in genes of the Ras/mitogen-activated protein kinase extracellular signal-regulated kinase (ERK) pathway and that present with some degree of learning difficulties or mental retardation. We investigated hippocampus-dependent learning and memory as well as synaptic plasticity in Spred1−/− mice, an animal model of this newly discovered human syndrome. Spred1−/− mice show decreased learning and memory performance in the Morris water maze and visual-discrimination T-maze, but normal basic neuromotor and sensory abilities. Electrophysiological recordings on brain slices from these animals identified defects in short- and long-term synaptic hippocampal plasticity, including a disequilibrium between long-term potentiation (LTP) and long-term depression in CA1 region. Biochemical analysis, 4 h after LTP induction, demonstrated increased ERK-phosphorylation in Spred1−/− slices compared with those of wild-type littermates. This indicates that deficits in hippocampus-dependent learning and synaptic plasticity induced by SPRED1 deficiency are related to hyperactivation of the Ras/ERK pathway.


The Journal of Neuroscience | 2013

Postnatal Disruption of the Disintegrin/Metalloproteinase ADAM10 in Brain Causes Epileptic Seizures, Learning Deficits, Altered Spine Morphology, and Defective Synaptic Functions

Johannes Prox; Christian Bernreuther; Hermann Altmeppen; Jasper Grendel; Markus Glatzel; Rudi D'Hooge; Stijn Stroobants; Tariq Ahmed; Detlef Balschun; Michael Willem; Sven Lammich; Dirk Isbrandt; Michaela Schweizer; Katrien Horré; Bart De Strooper; Paul Saftig

The metalloproteinase ADAM10 is of importance for Notch-dependent cortical brain development. The protease is tightly linked with α-secretase activity toward the amyloid precursor protein (APP) substrate. Increasing ADAM10 activity is suggested as a therapy to prevent the production of the neurotoxic amyloid β (Aβ) peptide in Alzheimer′s disease. To investigate the function of ADAM10 in postnatal brain, we generated Adam10 conditional knock-out (A10cKO) mice using a CaMKIIα-Cre deleter strain. The lack of ADAM10 protein expression was evident in the brain cortex leading to a reduced generation of sAPPα and increased levels of sAPPβ and endogenous Aβ peptides. The A10cKO mice are characterized by weight loss and increased mortality after weaning associated with seizures. Behavioral comparison of adult mice revealed that the loss of ADAM10 in the A10cKO mice resulted in decreased neuromotor abilities and reduced learning performance, which were associated with altered in vivo network activities in the hippocampal CA1 region and impaired synaptic function. Histological and ultrastructural analysis of ADAM10-depleted brain revealed astrogliosis, microglia activation, and impaired number and altered morphology of postsynaptic spine structures. A defect in spine morphology was further supported by a reduction of the expression of NMDA receptors subunit 2A and 2B. The reduced shedding of essential postsynaptic cell adhesion proteins such as N-Cadherin, Nectin-1, and APP may explain the postsynaptic defects and the impaired learning, altered network activity, and synaptic plasticity of the A10cKO mice. Our study reveals that ADAM10 is instrumental for synaptic and neuronal network function in the adult murine brain.


Biochemical Society Transactions | 2010

From tau phosphorylation to tau aggregation: what about neuronal death?

Luc Buée; Laetitia Troquier; Sylvie Burnouf; Karim Belarbi; Anneke Van der Jeugd; Tariq Ahmed; Francisco José Fernández-Gómez; Raphaëlle Caillierez; Marie-Eve Grosjean; Séverine Bégard; B. Barbot; Dominique Demeyer; Hélène Obriot; I. Brion; Valérie Buée-Scherrer; Claude-Alain Maurage; Detlef Balschun; Rudi D'Hooge; Malika Hamdane; David Blum; Nicolas Sergeant

Tau pathology is characterized by intracellular aggregates of abnormally and hyperphosphorylated tau proteins. It is encountered in many neurodegenerative disorders, but also in aging. These neurodegenerative disorders are referred to as tauopathies. Comparative biochemistry of the tau aggregates shows that they differ in both tau isoform phosphorylation and content, which enables a molecular classification of tauopathies. In conditions of dementia, NFD (neurofibrillary degeneration) severity is correlated to cognitive impairment and is often considered as neuronal death. Using tau animal models, analysis of the kinetics of tau phosphorylation, aggregation and neuronal death in parallel to electrophysiological and behavioural parameters indicates a disconnection between cognition deficits and neuronal cell death. Tau phosphorylation and aggregation are early events followed by cognitive impairment. Neuronal death is not observed before the oldest ages. A sequence of events may be the formation of toxic phosphorylated tau species, their aggregation, the formation of neurofibrillary tangles (from pre-tangles to ghost tangles) and finally neuronal cell death. This sequence will last from 15 to 25 years and one can ask whether the aggregation of toxic phosphorylated tau species is a protection against cell death. Apoptosis takes 24 h, but NFD lasts for 24 years to finally kill the neuron or rather to protect it for more than 20 years. Altogether, these data suggest that NFD is a transient state before neuronal death and that therapeutic interventions are possible at that stage.


The Journal of Neuroscience | 2005

Neurocognitive and Psychotiform Behavioral Alterations and Enhanced Hippocampal Long-Term Potentiation in Transgenic Mice Displaying Neuropathological Features of Human α-Mannosidosis

Rudi D'Hooge; Renate Lüllmann-Rauch; Tom Beckers; Detlef Balschun; Michael Schwake; Karina Reiss; Kurt von Figura; Paul Saftig

Mice with α-mannosidase gene inactivation provide an experimental model for α-mannosidosis, a lysosomal storage disease with severe neuropsychological and psychopathological complications. Neurohistological alterations in these mice were similar to those in patients and included vacuolations and axonal spheroids in the CNS and peripheral nervous system. Vacuolation was most prominent and evenly distributed in neuronal perikarya of the hippocampal CA2 and CA3 regions, whereas CA1 and dentate gyrus were weakly or not affected. Field potential recordings from CA1 region in hippocampal slices showed enhanced theta burst-induced long-term potentiation (LTP) in α-mannosidase-deficient mice. Longitudinal assessment in age-matched α-mannosidase-deficient and wild-type littermates, using an extended test battery, demonstrated a neurocognitive and psychotiform profile that may relate to the psychopathological alterations in clinical α-mannosidosis. Brainstem auditory-evoked potentials and basic neuromotor abilities were not impaired and did not deteriorate with age. Exploratory and conflict tests revealed consistent decreases in exploratory activity and emotional blunting in the knock-out group. α-Mannosidosis mice were also impaired in aversively motivated learning and acquisition of signal-shock associations. Acquisition and reversal learning in the water maze task, passive avoidance learning in the step-through procedure, as well as emotional response conditioning in an operant procedure were all impaired. Acquisition or shaping of an appetitive instrumental conditioning task was unchanged. Appetitive odor discrimination learning was only marginally impaired during shaping, whereas both the discrimination and reversal subtasks were normal. We propose that prominent storage and enhanced LTP in hippocampus have contributed to these specific behavioral alterations in α-mannosidase-deficient mice.

Collaboration


Dive into the Detlef Balschun's collaboration.

Top Co-Authors

Avatar

Tariq Ahmed

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Rudi D'Hooge

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Klaus G. Reymann

Leibniz Institute for Neurobiology

View shared research outputs
Top Co-Authors

Avatar

Amira Latif Hernandez

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Victor Sabanov

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

An Schreurs

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Bart De Strooper

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fred Van Leuven

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge