Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Detlev Schindler is active.

Publication


Featured researches published by Detlev Schindler.


Nature Genetics | 2007

Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer

Sarah Reid; Detlev Schindler; Helmut Hanenberg; Karen Barker; Sandra Hanks; Reinhard Kalb; Kornelia Neveling; Patrick Kelly; Sheila Seal; Marcel Freund; Melanie Wurm; Sat Dev Batish; Francis P. Lach; Sevgi Yetgin; Heidemarie Neitzel; Hany Ariffin; Marc Tischkowitz; Christopher G. Mathew; Arleen D. Auerbach; Nazneen Rahman

PALB2 was recently identified as a nuclear binding partner of BRCA2. Biallelic BRCA2 mutations cause Fanconi anemia subtype FA-D1 and predispose to childhood malignancies. We identified pathogenic mutations in PALB2 (also known as FANCN) in seven families affected with Fanconi anemia and cancer in early childhood, demonstrating that biallelic PALB2 mutations cause a new subtype of Fanconi anemia, FA-N, and, similar to biallelic BRCA2 mutations, confer a high risk of childhood cancer.


Nature Genetics | 1998

The Fanconi anaemia group G gene FANCG is identical with XRCC9

Johan P. de Winter; Quinten Waisfisz; Martin A. Rooimans; Carola G.M. van Berkel; Lucine Bosnoyan-Collins; Noa Alon; Madeleine Carreau; Olaf Bender; Ilja Demuth; Detlev Schindler; Jan C. Pronk; Fré Arwert; Holger Hoehn; Manuel Buchwald; Hans Joenje

Fanconi anemia (FA) is an autosomal recessive disease with diverse clinical symptoms including developmental anomalies, bone marrow failure and early occurrence of malignancies. In addition to spontaneous chromosome instability, FA cells exhibit cell cycle disturbances and hypersensitivity to cross-linking agents. Eight complementation groups (A-H) have been distinguished, each group possibly representing a distinct FA gene. The genes mutated in patients of complementation groups A (FANCA; Refs 4,5) and C (FANCC; ref. 6) have been identified, and FANCD has been mapped to chromosome band 3p22-26 (ref. 7). An additional FA gene has recently been mapped to chromosome 9p (ref. 8). Here we report the identification of the gene mutated in group G, FANCG, on the basis of complementation of an FA-G cell line and the presence of pathogenic mutations in four FA-G patients. We identified the gene as human XRCC9, a gene which has been shown to complement the MMC-sensitive Chinese hamster mutant UV40, and is suspected to be involved in DNA post-replication repair or cell cycle checkpoint control. The gene is localized to chromosome band 9p13 (ref. 9), corresponding with a known localization of an FA gene.


Nature Genetics | 2010

Mutation of the RAD51C gene in a Fanconi anemia- like disorder

Fiona Vaz; Helmut Hanenberg; Beatrice Schuster; Karen Barker; Constanze Wiek; Verena Erven; Kornelia Neveling; Daniela Endt; Ian Kesterton; Flavia Autore; Franca Fraternali; Marcel Freund; Linda Hartmann; David Grimwade; Roland G. Roberts; Heiner Schaal; Shehla Mohammed; Nazneen Rahman; Detlev Schindler; Christopher G. Mathew

Fanconi anemia (FA) is a rare chromosomal-instability disorder associated with a variety of developmental abnormalities, bone marrow failure and predisposition to leukemia and other cancers. We have identified a homozygous missense mutation in the RAD51C gene in a consanguineous family with multiple severe congenital abnormalities characteristic of FA. RAD51C is a member of the RAD51-like gene family involved in homologous recombination–mediated DNA repair. The mutation results in loss of RAD51 focus formation in response to DNA damage and in increased cellular sensitivity to the DNA interstrand cross-linking agent mitomycin C and the topoisomerase-1 inhibitor camptothecin. Thus, biallelic germline mutations in a RAD51 paralog are associated with an FA-like syndrome.


Nature Genetics | 2005

The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia

Orna Levran; Claire Attwooll; Rashida Henry; Kelly Milton; Kornelia Neveling; Paula Río; Sat Dev Batish; Reinhard Kalb; Eunike Velleuer; Sandra Barral; Jurg Ott; John H.J. Petrini; Detlev Schindler; Helmut Hanenberg; Arleen D. Auerbach

Seven Fanconi anemia–associated proteins (FANCA, FANCB, FANCC, FANCE, FANCF, FANCG and FANCL) form a nuclear Fanconi anemia core complex that activates the monoubiquitination of FANCD2, targeting FANCD2 to BRCA1-containing nuclear foci. Cells from individuals with Fanconi anemia of complementation groups D1 and J (FA-D1 and FA-J) have normal FANCD2 ubiquitination. Using genetic mapping, mutation identification and western-blot data, we identify the defective protein in FA-J cells as BRIP1 (also called BACH1), a DNA helicase that is a binding partner of the breast cancer tumor suppressor BRCA1.


Science | 2008

Mutations in the Pericentrin (PCNT) Gene Cause Primordial Dwarfism

Anita Rauch; Christian Thiel; Detlev Schindler; Ursula Wick; Yanick J. Crow; Arif B. Ekici; Anthonie J. van Essen; Timm O. Goecke; Lihadh Al-Gazali; Krystyna H. Chrzanowska; Christiane Zweier; Han G. Brunner; Kristin Becker; Cynthia J. Curry; Bruno Dallapiccola; Koenraad Devriendt; Arnd Dörfler; Esther Kinning; André Mégarbané; Peter Meinecke; Robert K. Semple; Stephanie Spranger; Annick Toutain; Richard C. Trembath; Egbert Voss; Louise C. Wilson; Raoul C. M. Hennekam; Francis de Zegher; Helmuth Günther Dörr; André Reis

Fundamental processes influencing human growth can be revealed by studying extreme short stature. Using genetic linkage analysis, we find that biallelic loss-of-function mutations in the centrosomal pericentrin (PCNT) gene on chromosome 21q22.3 cause microcephalic osteodysplastic primordial dwarfism type II (MOPD II) in 25 patients. Adults with this rare inherited condition have an average height of 100 centimeters and a brain size comparable to that of a 3-month-old baby, but are of near-normal intelligence. Absence of PCNT results in disorganized mitotic spindles and missegregation of chromosomes. Mutations in related genes are known to cause primary microcephaly (MCPH1, CDK5RAP2, ASPM, and CENPJ).


Nature Genetics | 2011

SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype

Chantal Stoepker; Karolina Hain; Beatrice Schuster; Yvonne Hilhorst-Hofstee; Martin A. Rooimans; Jurgen Steltenpool; Anneke B. Oostra; Katharina Eirich; Elisabeth T. Korthof; Aggie Nieuwint; Nicolaas G. J. Jaspers; Thomas Bettecken; Hans Joenje; Detlev Schindler; John Rouse; Johan P. de Winter

DNA interstrand crosslink repair requires several classes of proteins, including structure-specific endonucleases and Fanconi anemia proteins. SLX4, which coordinates three separate endonucleases, was recently recognized as an important regulator of DNA repair. Here we report the first human individuals found to have biallelic mutations in SLX4. These individuals, who were previously diagnosed as having Fanconi anemia, add SLX4 as an essential component to the FA-BRCA genome maintenance pathway.


American Journal of Human Genetics | 2013

Mutations in ERCC4, Encoding the DNA-Repair Endonuclease XPF, Cause Fanconi Anemia

Massimo Bogliolo; Beatrice Schuster; Chantal Stoepker; Burak Derkunt; Yan Su; Anja Raams; Juan P. Trujillo; Jordi Minguillón; M.J. Ramírez; Roser Pujol; José A. Casado; Rocío Baños; Paula Rio; Kerstin Knies; Sheila Zuñiga; Javier Benitez; Juan A. Bueren; Nicolaas G. J. Jaspers; Orlando D. Schärer; Johan P. de Winter; Detlev Schindler; Jordi Surrallés

Fanconi anemia (FA) is a rare genomic instability disorder characterized by progressive bone marrow failure and predisposition to cancer. FA-associated gene products are involved in the repair of DNA interstrand crosslinks (ICLs). Fifteen FA-associated genes have been identified, but the genetic basis in some individuals still remains unresolved. Here, we used whole-exome and Sanger sequencing on DNA of unclassified FA individuals and discovered biallelic germline mutations in ERCC4 (XPF), a structure-specific nuclease-encoding gene previously connected to xeroderma pigmentosum and segmental XFE progeroid syndrome. Genetic reversion and wild-type ERCC4 cDNA complemented the phenotype of the FA cell lines, providing genetic evidence that mutations in ERCC4 cause this FA subtype. Further biochemical and functional analysis demonstrated that the identified FA-causing ERCC4 mutations strongly disrupt the function of XPF in DNA ICL repair without severely compromising nucleotide excision repair. Our data show that depending on the type of ERCC4 mutation and the resulting balance between both DNA repair activities, individuals present with one of the three clinically distinct disorders, highlighting the multifunctional nature of the XPF endonuclease in genome stability and human disease.


Molecular Cell | 2010

A Histone-Fold Complex and FANCM Form a Conserved DNA-Remodeling Complex to Maintain Genome Stability

Zhijiang Yan; Mathieu Delannoy; Chen Ling; Danielle L. Daee; Fekret Osman; Parameswary A. Muniandy; Xi Shen; Anneke B. Oostra; Hansen Du; Jurgen Steltenpool; Ti Lin; Beatrice Schuster; Chantal Décaillet; Andrzej Stasiak; Alicja Z. Stasiak; Stacie Stone; Maureen E. Hoatlin; Detlev Schindler; Christopher L. Woodcock; Hans Joenje; Ranjan Sen; Johan P. de Winter; Lei Li; Michael M. Seidman; Matthew C. Whitby; Kyungjae Myung; Angelos Constantinou; Weidong Wang

FANCM remodels branched DNA structures and plays essential roles in the cellular response to DNA replication stress. Here, we show that FANCM forms a conserved DNA-remodeling complex with a histone-fold heterodimer, MHF. We find that MHF stimulates DNA binding and replication fork remodeling by FANCM. In the cell, FANCM and MHF are rapidly recruited to forks stalled by DNA interstrand crosslinks, and both are required for cellular resistance to such lesions. In vertebrates, FANCM-MHF associates with the Fanconi anemia (FA) core complex, promotes FANCD2 monoubiquitination in response to DNA damage, and suppresses sister-chromatid exchanges. Yeast orthologs of these proteins function together to resist MMS-induced DNA damage and promote gene conversion at blocked replication forks. Thus, FANCM-MHF is an essential DNA-remodeling complex that protects replication forks from yeast to human.


Experimental Cell Research | 1988

BrdU—Hoechst flow cytometry: A unique tool for quantitative cell cycle analysis☆

P.S. Rabinovitch; M. Kubbies; Y.C. Chen; Detlev Schindler; Holger Hoehn

Unlike other techniques, flow cytometric analysis of BrdU-quenched 33258 Hoechst fluorescence may be used to measure cell activation and the G1, S, and G2/M compartment distributions in each of three successive cell cycles after growth stimulation of human peripheral blood lymphocytes. Cell cycle kinetic curves can be constructed from the BrdU-Hoechst flow data which allow the simultaneous assessment of growth fraction, lag-time, compartment exit rate, compartment duration, and compartment arrest. Applications of this new versatile technique include the evaluation of drug and growth factor effects, cell aging, and diagnosis in medicine and immunology.


The EMBO Journal | 2007

FAAP100 is essential for activation of the Fanconi anemia-associated DNA damage response pathway

Chen Ling; Masamichi Ishiai; Abdullah Mahmood Ali; Annette L. Medhurst; Kornelia Neveling; Reinhard Kalb; Zhijiang Yan; Yutong Xue; Anneke B. Oostra; Arleen D. Auerbach; Maureen E. Hoatlin; Detlev Schindler; Hans Joenje; Johan P. de Winter; Minoru Takata; Amom Ruhikanta Meetei; Weidong Wang

The Fanconi anemia (FA) core complex plays a central role in the DNA damage response network involving breast cancer susceptibility gene products, BRCA1 and BRCA2. The complex consists of eight FA proteins, including a ubiquitin ligase (FANCL) and a DNA translocase (FANCM), and is essential for monoubiquitination of FANCD2 in response to DNA damage. Here, we report a novel component of this complex, termed FAAP100, which is essential for the stability of the core complex and directly interacts with FANCB and FANCL to form a stable subcomplex. Formation of this subcomplex protects each component from proteolytic degradation and also allows their coregulation by FANCA and FANCM during nuclear localization. Using siRNA depletion and gene knockout techniques, we show that FAAP100‐deficient cells display hallmark features of FA cells, including defective FANCD2 monoubiquitination, hypersensitivity to DNA crosslinking agents, and genomic instability. Our study identifies FAAP100 as a new critical component of the FA‐BRCA DNA damage response network.

Collaboration


Dive into the Detlev Schindler's collaboration.

Top Co-Authors

Avatar

Holger Hoehn

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thilo Dörk

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar

Hans Joenje

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Johan P. de Winter

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge