Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deug-Nam Kwon is active.

Publication


Featured researches published by Deug-Nam Kwon.


Nanoscale Research Letters | 2014

Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria

Sangiliyandi Gurunathan; Jae Woong Han; Deug-Nam Kwon; Jin-Hoi Kim

Silver nanoparticles (AgNPs) have been used as antibacterial, antifungal, antiviral, anti-inflammtory, and antiangiogenic due to its unique properties such as physical, chemical, and biological properties. The present study was aimed to investigate antibacterial and anti-biofilm activities of silver nanoparticles alone and in combination with conventional antibiotics against various human pathogenic bacteria. Here, we show that a simple, reliable, cost effective and green method for the synthesis of AgNPs by treating silver ions with leaf extract of Allophylus cobbe. The A. cobbe-mediated synthesis of AgNPs (AgNPs) was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the antibacterial and anti-biofilm activity of antibiotics or AgNPs, or combinations of AgNPs with an antibiotic was evaluated using a series of assays: such as in vitro killing assay, disc diffusion assay, biofilm inhibition, and reactive oxygen species generation in Pseudomonas aeruginosa, Shigella flexneri, Staphylococcus aureus, and Streptococcus pneumonia. The results suggest that, in combination with antibiotics, there were significant antimicrobial and anti-biofilm effects at lowest concentration of AgNPs using a novel plant extract of A. cobbe, otherwise sublethal concentrations of the antibiotics. The significant enhancing effects were observed for ampicillin and vancomycin against Gram-negative and Gram-positive bacteria, respectively. These data suggest that combining antibiotics and biogenic AgNPs can be used therapeutically for the treatment of infectious diseases caused by bacteria. This study presented evidence of antibacterial and anti-biofilm effects of A. cobbe-mediated synthesis of AgNPs and their enhanced capacity against various human pathogenic bacteria. These results suggest that AgNPs could be used as an adjuvant for the treatment of infectious diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Engraftment of human iPS cells and allogeneic porcine cells into pigs with inactivated RAG2 and accompanying severe combined immunodeficiency

Kiho Lee; Deug-Nam Kwon; Toshihiko Ezashi; Yun-Jung Choi; Chankyu Park; Aaron C. Ericsson; Alana N. Brown; Melissa Samuel; Kwang-Wook Park; Eric M. Walters; Dae-Young Kim; Jae-Hwan Kim; Craig L. Franklin; Clifton N. Murphy; R. Michael Roberts; Randall S. Prather; Jin-Hoi Kim

Significance Pigs have many features that make them attractive as biomedical models, especially in regenerative medicine. Here, we have introduced inactivating mutations simultaneously into both alleles of the recombination activating gene (RAG) 2 gene in fibroblasts derived from minipigs and then used somatic-cell nuclear transfer to produce RAG2−/− cloned animals with a severe immune deficiency (SCID) phenotype and lacking T and B cells. When human induced pluripotent (iPS) cells were injected into these SCID pigs, the animals readily form teratomas representing a wide range of human tissues. Provided they can be protected from pathogens, these genetically engineered pigs could be a valuable resource as models for human patients with analogous immunodeficiencies and for testing the safety and regenerative capacity of grafts derived from iPS cells. Pigs with severe combined immunodeficiency (SCID) may provide useful models for regenerative medicine, xenotransplantation, and tumor development and will aid in developing therapies for human SCID patients. Using a reporter-guided transcription activator-like effector nuclease (TALEN) system, we generated targeted modifications of recombination activating gene (RAG) 2 in somatic cells at high efficiency, including some that affected both alleles. Somatic-cell nuclear transfer performed with the mutated cells produced pigs with RAG2 mutations without integrated exogenous DNA. Biallelically modified pigs either lacked a thymus or had one that was underdeveloped. Their splenic white pulp lacked B and T cells. Under a conventional housing environment, the biallelic RAG2 mutants manifested a “failure to thrive” phenotype, with signs of inflammation and apoptosis in the spleen compared with age-matched wild-type animals by the time they were 4 wk of age. Pigs raised in a clean environment were healthier and, following injection of human induced pluripotent stem cells (iPSCs), quickly developed mature teratomas representing all three germ layers. The pigs also tolerated grafts of allogeneic porcine trophoblast stem cells. These SCID pigs should have a variety of uses in transplantation biology.


Nanoscale Research Letters | 2014

Oxidative stress mediated cytotoxicity of biologically synthesized silver nanoparticles in human lung epithelial adenocarcinoma cell line

Jae Woong Han; Sangiliyandi Gurunathan; Jae-Kyo Jeong; Yun-Jung Choi; Deug-Nam Kwon; Jin-Ki Park; Jin-Hoi Kim

The goal of the present study was to investigate the toxicity of biologically prepared small size of silver nanoparticles in human lung epithelial adenocarcinoma cells A549. Herein, we describe a facile method for the synthesis of silver nanoparticles by treating the supernatant from a culture of Escherichia coli with silver nitrate. The formation of silver nanoparticles was characterized using various analytical techniques. The results from UV-visible (UV-vis) spectroscopy and X-ray diffraction analysis show a characteristic strong resonance centered at 420 nm and a single crystalline nature, respectively. Fourier transform infrared spectroscopy confirmed the possible bio-molecules responsible for the reduction of silver from silver nitrate into nanoparticles. The particle size analyzer and transmission electron microscopy results suggest that silver nanoparticles are spherical in shape with an average diameter of 15 nm. The results derived from in vitro studies showed a concentration-dependent decrease in cell viability when A549 cells were exposed to silver nanoparticles. This decrease in cell viability corresponded to increased leakage of lactate dehydrogenase (LDH), increased intracellular reactive oxygen species generation (ROS), and decreased mitochondrial transmembrane potential (MTP). Furthermore, uptake and intracellular localization of silver nanoparticles were observed and were accompanied by accumulation of autophagosomes and autolysosomes in A549 cells. The results indicate that silver nanoparticles play a significant role in apoptosis. Interestingly, biologically synthesized silver nanoparticles showed more potent cytotoxicity at the concentrations tested compared to that shown by chemically synthesized silver nanoparticles. Therefore, our results demonstrated that human lung epithelial A549 cells could provide a valuable model to assess the cytotoxicity of silver nanoparticles.


Zygote | 2003

Nuclear remodelling and the developmental potential of nuclear transferred porcine oocytes under delayed-activated conditions

Xi-Jun Yin; Seong-Keun Cho; Mi-Ryeung Park; Yeo-Jeoung Im; Joung-Ju Park; Jong-Sik Bhak; Deug-Nam Kwon; Sun Hong Jun; Nam-Hyung Kim; Jin-Hoi Kim

It is still unclear whether nuclear envelope breakdown and premature chromosome condensation are essential for the reprogramming of the donor nucleus following somatic nuclear transfer. To address this, we determined the ability of delayed-activated or simultaneously activated porcine oocytes to undergo nuclear remodelling and development following somatic cell nuclear transfer. A small microtubule aster was observed in association with decondensed chromatin following nuclear transfer, suggesting the introduction of a somatic cell centrosome. In the delayed-activated condition, most fibroblast nuclei divided into two chromosome masses and two pronuclear-like structures following transfer into oocytes. In contrast, fibroblast nuclei in the simultaneously activated condition formed a large, swollen, pronuclear-like structure. Microtubule asters were organised in the vicinity of the nucleus regardless of the number of nuclei. More reconstructed oocytes developed to the blastocyst stage in the delayed-activated condition than in the simultaneously activated condition (p < 0.05). Nine piglets were born from two recipient sows following transfer of delayed-activated reconstructed oocytes, while none developed to full term in the simultaneously activated condition. Fingerprint analysis showed that the PCR-RFLP patterns of the nine offspring were identical to that of the donor pig. These results suggest that the activation of recipient oocytes during nuclear transfer probably relates to the nuclear remodelling process, which can affect the ability of embryos created by somatic cell nuclear transfer to develop.


International Journal of Nanomedicine | 2015

Reduced graphene oxide-silver nanoparticle nanocomposite: a potential anticancer nanotherapy.

Sangiliyandi Gurunathan; Jae Woong Han; Jung Hyun Park; Eunsu Kim; Yun-Jung Choi; Deug-Nam Kwon; Jin-Hoi Kim

Background Graphene and graphene-based nanocomposites are used in various research areas including sensing, energy storage, and catalysis. The mechanical, thermal, electrical, and biological properties render graphene-based nanocomposites of metallic nanoparticles useful for several biomedical applications. Epithelial ovarian carcinoma is the fifth most deadly cancer in women; most tumors initially respond to chemotherapy, but eventually acquire chemoresistance. Consequently, the development of novel molecules for cancer therapy is essential. This study was designed to develop a simple, non-toxic, environmentally friendly method for the synthesis of reduced graphene oxide–silver (rGO–Ag) nanoparticle nanocomposites using Tilia amurensis plant extracts as reducing and stabilizing agents. The anticancer properties of rGO–Ag were evaluated in ovarian cancer cells. Methods The synthesized rGO–Ag nanocomposite was characterized using various analytical techniques. The anticancer properties of the rGO–Ag nanocomposite were evaluated using a series of assays such as cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, cellular levels of malonaldehyde and glutathione, caspase-3 activity, and DNA fragmentation in ovarian cancer cells (A2780). Results AgNPs with an average size of 20 nm were uniformly dispersed on graphene sheets. The data obtained from the biochemical assays indicate that the rGO–Ag nanocomposite significantly inhibited cell viability in A2780 ovarian cancer cells and increased lactate dehydrogenase leakage, reactive oxygen species generation, caspase-3 activity, and DNA fragmentation compared with other tested nanomaterials such as graphene oxide, rGO, and AgNPs. Conclusion T. amurensis plant extract-mediated rGO–Ag nanocomposites could facilitate the large-scale production of graphene-based nanocomposites; rGO–Ag showed a significant inhibiting effect on cell viability compared to graphene oxide, rGO, and silver nanoparticles. The nanocomposites could be effective non-toxic therapeutic agents for the treatment of both cancer and cancer stem cells.


Nanoscale Research Letters | 2013

Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells

Sangiliyandi Gurunathan; Jae Woong Han; Vasuki Eppakayala; Ahmed Abdal Dayem; Deug-Nam Kwon; Jin-Hoi Kim

Due to unique properties and unlimited possible applications, graphene has attracted abundant interest in the areas of nanobiotechnology. Recently, much work has focused on the synthesis and properties of graphene. Here we show that a successful reduction of graphene oxide (GO) using spinach leaf extract (SLE) as a simultaneous reducing and stabilizing agent. The as-prepared SLE-reduced graphene oxide (S-rGO) was characterized by ultraviolet–visible spectroscopy and Fourier transform infrared spectroscopy. Dynamic light scattering technique was used to determine the average size of GO and S-rGO. Scanning electron microscopy and atomic force microscopy images provide clear surface morphological evidence for the formation of graphene. The resulting S-rGO has a mostly single-layer structure, is stable, and has significant water solubility. In addition, the biocompatibility of graphene was investigated using cell viability, leakage of lactate dehydrogenase and alkaline phosphatase activity in primary mouse embryonic fibroblast (PMEFs) cells. The results suggest that the biologically synthesized graphene has significant biocompatibility with PMEF cells, even at a higher concentration of 100 μg/mL. This method uses a ‘green’, natural reductant and is free of additional stabilizing reagents; therefore, it is an environmentally friendly, simple, and cost-effective method for the fabrication of soluble graphene. This study could open up a promising view for substitution of hydrazine by a safe, biocompatible, and powerful reduction for the efficient deoxygenation of GO, especially in large-scale production and potential biomedical applications.


Journal of Nanobiotechnology | 2014

Enhanced green fluorescent protein-mediated synthesis of biocompatible graphene

Sangiliyandi Gurunathan; Jae Woong Han; Eunsu Kim; Deug-Nam Kwon; Jin-Ki Park; Jin-Hoi Kim

BackgroundGraphene is the 2D form of carbon that exists as a single layer of atoms arranged in a honeycomb lattice and has attracted great interest in the last decade in view of its physical, chemical, electrical, elastic, thermal, and biocompatible properties. The objective of this study was to synthesize an environmentally friendly and simple methodology for the preparation of graphene using a recombinant enhanced green fluorescent protein (EGFP).ResultsThe successful reduction of GO to graphene was confirmed using UV-vis spectroscopy, and FT-IR. DLS and SEM were employed to demonstrate the particle size and surface morphology of GO and EGFP-rGO. The results from Raman spectroscopy suggest the removal of oxygen-containing functional groups from the surface of GO and formation of graphene with defects. The biocompatibility analysis of GO and EGFP-rGO in human embryonic kidney (HEK) 293 cells suggests that GO induces significant concentration-dependent cell toxicity in HEK cells, whereas graphene exerts no adverse effects on HEK cells even at a higher concentration (100µg/mL).ConclusionsAltogether, our findings suggest that recombinant EGFP can be used as a reducing and stabilizing agent for the preparation of biocompatible graphene. The novelty and originality of this work is that it describes a safe, simple, and environmentally friendly method for the production of graphene using recombinant enhanced green fluorescent protein. Furthermore, the synthesized graphene shows excellent biocompatibility with HEK cells; therefore, biologically synthesized graphene can be used for biomedical applications. To the best of our knowledge, this is the first and novel report describing the synthesis of graphene using recombinant EGFP.


Development | 2012

Epigenetic reprogramming in somatic cells induced by extract from germinal vesicle stage pig oocytes

Hong-Thuy Bui; Deug-Nam Kwon; Min-Hui Kang; Mihye Oh; Mi-Ryung Park; Woo-Jin Park; Seung-Sam Paik; Nguyen Van Thuan; Jin-Hoi Kim

Genomic reprogramming factors in the cytoplasm of germinal vesicle (GV) stage oocytes have been shown to improve the efficiency of producing cloned mouse offspring through the exposure of nuclei to a GV cytoplasmic extract prior to somatic cell nuclear transfer (SCNT) to enucleated oocytes. Here, we developed an extract of GV stage pig oocytes (GVcyto-extract) to investigate epigenetic reprogramming events in treated somatic cell nuclei. This extract induced differentiation-associated changes in fibroblasts, resulting in cells that exhibit pluripotent stem cell-like characteristics and that redifferentiate into three primary germ cell layers both in vivo and in vitro. The GVcyto-extract treatment induced large numbers of high-quality SCNT-generated blastocysts, with methylation and acetylation of H3-K9 and expression of Oct4 and Nanog at levels similar to in vitro fertilized embryos. Thus, GVcyto-extract could elicit differentiation plasticity in treated fibroblasts, and SCNT-mediated reprogramming reset the epigenetic state in treated cells more efficiently than in untreated cells. In summary, we provide evidence for the generation of stem-like cells from differentiated somatic cells by treatment with porcine GVcyto-extract.


Nanotoxicology | 2016

Male- and female-derived somatic and germ cell-specific toxicity of silver nanoparticles in mouse

Jae Woong Han; Jae-Kyo Jeong; Sangiliyandi Gurunathan; Yun-Jung Choi; Joydeep Das; Deug-Nam Kwon; Ssang-Goo Cho; Chankyu Park; Han Geuk Seo; Jin-Ki Park; Jin-Hoi Kim

Abstract Silver nanoparticles (AgNPs) are widely used as an antibiotic agent in textiles, wound dressings, medical devices, and appliances such as refrigerators and washing machines. The increasing use of AgNPs has raised concerns about their potential risks to human health. Therefore, this study was aimed to determine the impact of AgNPs in germ cell specific complications in mice. The administration of AgNPs results in toxicity in mice; however, a more detailed understanding of the effects of AgNPs on germ cells remains poorly understood. Here, we demonstrate the effects of AgNPs (20 nm in diameter) in a mouse Sertoli and granulosa cells in vitro, and in male and female mice in vivo. Soluble silver ion (Ag+)-treated cells were used as a positive control. We found that excessive AgNP-treated cells exhibited cytotoxicity, the formation of autophagosomes and autolysosomes in Sertoli cells. Furthermore, an increase in mitochondrial-mediated apoptosis by cytochrome c release from mitochondria due to translocation of Bax to mitochondria was observed. In in vivo studies, the expression of pro-inflammatory cytokines, including tumor necrosis factor α, interferon-γ, −6, −1β, and monocyte chemoattractant protein-1 were significantly increased (p < 0.05). Histopathological analysis of AgNP-treated mice shows that a significant loss of male and female germ cells. Taken together, these data suggest that AgNPs with an average size of 20 nm have negative impact on the reproduction.


Scientific Reports | 2015

Internalization of silver nanoparticles into mouse spermatozoa results in poor fertilization and compromised embryo development

Ton Yoisungnern; Yun-Jung Choi; Jae Woong Han; Min-Hee Kang; Joydeep Das; Sangiliyandi Gurunathan; Deug-Nam Kwon; Ssang-Goo Cho; Chankyu Park; Won Kyung Chang; Byung-Soo Chang; Rangsun Parnpai; Jin-Hoi Kim

Silver nanoparticles (AgNPs) have many features that make them attractive as medical devices, especially in therapeutic agents and drug delivery systems. Here we have introduced AgNPs into mouse spermatozoa and then determined the cytotoxic effects of AgNPs on sperm function and subsequent embryo development. Scanning electron microscopy and transmission electron microscopy analyses showed that AgNPs could be internalized into sperm cells. Furthermore, exposure to AgNPs inhibited sperm viability and the acrosome reaction in a dose-dependent manner, whereas sperm mitochondrial copy numbers, morphological abnormalities, and mortality due to reactive oxygen species were significantly increased. Likewise, sperm abnormalities due to AgNPs internalization significantly decreased the rate of oocyte fertilization and blastocyst formation. Blastocysts obtained from AgNPs-treated spermatozoa showed lower expression of trophectoderm-associated and pluripotent marker genes. Overall, we propose that AgNPs internalization into spermatozoa may alter sperm physiology, leading to poor fertilization and embryonic development. Such AgNPs-induced reprotoxicity may be a valuable tool as models for testing the safety and applicability of medical devices using AgNPs.

Collaboration


Dive into the Deug-Nam Kwon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seong-Keun Cho

Pusan National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge