Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deven R. See is active.

Publication


Featured researches published by Deven R. See.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars

Colin Cavanagh; Shiaoman Chao; Shichen Wang; Bevan Emma Huang; Stuart Stephen; Seifollah Kiani; Kerrie L. Forrest; Cyrille Saintenac; Gina Brown-Guedira; Alina Akhunova; Deven R. See; Guihua Bai; Michael O. Pumphrey; Luxmi Tomar; Debbie Wong; Stephan Kong; Matthew P. Reynolds; Marta Lopez da Silva; Harold E. Bockelman; L. E. Talbert; James A. Anderson; Susanne Dreisigacker; Arron H. Carter; Viktor Korzun; Peter L. Morrell; Jorge Dubcovsky; Matthew K. Morell; Mark E. Sorrells; Matthew J. Hayden; Eduard Akhunov

Domesticated crops experience strong human-mediated selection aimed at developing high-yielding varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated single-nucleotide polymorphisms (SNP) in a worldwide sample of 2,994 accessions of hexaploid wheat including landraces and modern cultivars. Using a SNP-based diversity map we characterized the impact of crop improvement on genomic and geographic patterns of genetic diversity. We found evidence of a small population bottleneck and extensive use of ancestral variation often traceable to founders of cultivars from diverse geographic regions. Analyzing genetic differentiation among populations and the extent of haplotype sharing, we identified allelic variants subjected to selection during improvement. Selective sweeps were found around genes involved in the regulation of flowering time and phenology. An introgression of a wild relative-derived gene conferring resistance to a fungal pathogen was detected by haplotype-based analysis. Comparing selective sweeps identified in different populations, we show that selection likely acts on distinct targets or multiple functionally equivalent alleles in different portions of the geographic range of wheat. The majority of the selected alleles were present at low frequency in local populations, suggesting either weak selection pressure or temporal variation in the targets of directional selection during breeding probably associated with changing agricultural practices or environmental conditions. The developed SNP chip and map of genetic variation provide a resource for advancing wheat breeding and supporting future population genomic and genome-wide association studies in wheat.


Plant Physiology | 2013

Comparative Analysis of Syntenic Genes in Grass Genomes Reveals Accelerated Rates of Gene Structure and Coding Sequence Evolution in Polyploid Wheat

Eduard Akhunov; Sunish K. Sehgal; Hanquan Liang; Shichen Wang; Alina Akhunova; Gaganpreet Kaur; Wanlong Li; Kerrie L. Forrest; Deven R. See; Hana Šimková; Yaqin Ma; Matthew J. Hayden; Ming-Cheng Luo; Justin D. Faris; Jaroslav Dolezel; Bikram S. Gill

Cycles of whole-genome duplication (WGD) and diploidization are hallmarks of eukaryotic genome evolution and speciation. Polyploid wheat (Triticum aestivum) has had a massive increase in genome size largely due to recent WGDs. How these processes may impact the dynamics of gene evolution was studied by comparing the patterns of gene structure changes, alternative splicing (AS), and codon substitution rates among wheat and model grass genomes. In orthologous gene sets, significantly more acquired and lost exonic sequences were detected in wheat than in model grasses. In wheat, 35% of these gene structure rearrangements resulted in frame-shift mutations and premature termination codons. An increased codon mutation rate in the wheat lineage compared with Brachypodium distachyon was found for 17% of orthologs. The discovery of premature termination codons in 38% of expressed genes was consistent with ongoing pseudogenization of the wheat genome. The rates of AS within the individual wheat subgenomes (21%–25%) were similar to diploid plants. However, we uncovered a high level of AS pattern divergence between the duplicated homeologous copies of genes. Our results are consistent with the accelerated accumulation of AS isoforms, nonsynonymous mutations, and gene structure rearrangements in the wheat lineage, likely due to genetic redundancy created by WGDs. Whereas these processes mostly contribute to the degeneration of a duplicated genome and its diploidization, they have the potential to facilitate the origin of new functional variations, which, upon selection in the evolutionary lineage, may play an important role in the origin of novel traits.


PLOS ONE | 2015

Mapping a Large Number of QTL for Durable Resistance to Stripe Rust in Winter Wheat Druchamp Using SSR and SNP Markers

Lu Hou; Xianming Chen; Meinan Wang; Deven R. See; Shiaoman Chao; Peter Bulli; Jinxue Jing

Winter wheat Druchamp has both high-temperature adult-plant (HTAP) resistance and all-stage resistance to stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). The HTAP resistance in Druchamp is durable as the variety has been resistant in adult-plant stage since it was introduced from France to the United States in late 1940s. To map the quantitative trait loci (QTL) for stripe rust resistance, an F8 recombinant inbred line (RIL) population from cross Druchamp × Michigan Amber was phenotyped for stripe rust response in multiple years in fields under natural infection and with selected Pst races under controlled greenhouse conditions, and genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers. Composite interval mapping (CIM) identified eight HTAP resistance QTL and three all-stage resistance QTL. Among the eight HTAP resistance QTL, QYrdr.wgp-1BL.2 (explaining 2.36-31.04% variation), QYrdr.wgp-2BL (2.81–15.65%), QYrdr.wgp-5AL (2.27–17.22%) and QYrdr.wgp-5BL.2 (2.42–15.13%) were significant in all tests; and QYrdr.wgp-1BL.1 (1.94–10.19%), QYrdr.wgp-1DS (2.04–27.24%), QYrdr.wgp-3AL (1.78–13.85%) and QYrdr.wgp-6BL.2 (1.69–33.71%) were significant in some of the tests. The three all-stage resistance QTL, QYrdr.wgp-5BL.1 (5.47–36.04%), QYrdr.wgp-5DL (9.27–11.94%) and QYrdr.wgp-6BL.1 (13.07-20.36%), were detected based on reactions in the seedlings tested with certain Pst races. Among the eleven QTL detected in Druchamp, at least three (QYrdr.wgp-5DL for race-specific all-stage resistance and QYrdr.wgp-3AL and QYrdr.wgp-6BL.2 for race non-specific HTAP resistance) are new. All these QTL, especially those for durable HTAP resistance, and their closely linked molecular markers could be useful for developing wheat cultivars with durable resistance to stripe rust.


Phytopathology | 2016

Grass Hosts Harbor More Diverse Isolates of Puccinia striiformis Than Cereal Crops

P. Cheng; Xianming Chen; Deven R. See

Puccinia striiformis causes stripe rust on cereal crops and many grass species. However, it is not clear whether the stripe rust populations on grasses are able to infect cereal crops and how closely they are related to each other. In this study, 103 isolates collected from wheat, barley, triticale, rye, and grasses in the United States were characterized by virulence tests and simple sequence repeat (SSR) markers. Of 69 pathotypes identified, 41 were virulent on some differentials of wheat only, 10 were virulent on some differentials of barley only, and 18 were virulent on some differentials of both wheat and barley. These pathotypes were clustered into three groups: group one containing isolates from wheat, triticale, rye, and grasses; group two isolates were from barley and grasses; and group three isolates were from grasses and wheat. SSR markers identified 44 multilocus genotypes (MLGs) and clustered them into three major molecular groups (MG) with MLGs in MG3 further classified into three subgroups. Isolates from cereal crops were present in one or more of the major or subgroups, but not all, whereas grass isolates were present in all of the major and subgroups. The results indicate that grasses harbor more diverse isolates of P. striiformis than the cereals.


Fungal Biology | 2016

Secreted protein gene derived-single nucleotide polymorphisms (SP-SNPs) reveal population diversity and differentiation of Puccinia striiformis f. sp. tritici in the United States.

Chongjing Xia; Anmin Wan; Meinan Wang; Derick Jiwan; Deven R. See; Xianming Chen

Single nucleotide polymorphism (SNP) is a powerful molecular marker technique that has been widely used in population genetics and molecular mapping studies for various organisms. However, the technique has not been used for studying Puccinia striiformis f. sp. tritici (Pst), the wheat stripe rust pathogen. In this study, we developed over a hundred secreted protein gene-derived SNP (SP-SNP) markers and used 92 markers to study the population structure of Pst. From 352 isolates collected in the United States, we identified 242 multi-locus genotypes. The SP-SNP genotypes had a moderate, but significant correlation with the virulence phenotype data. Clustering of the multi-locus genotypes was consistent by various analyses, revealing distinct genetic groups. Analysis of molecular variance detected significant differences between the eastern and western US Pst populations. High heterozygosity was found in the US population with significant differences identified among epidemiological regions. Analysis of population differentiation revealed that populations between the eastern and western US were highly differentiated while moderate differentiation was found in populations within the western or eastern US. Isolates from the western US were more diverse than isolates from the eastern US. The information is useful for guiding the disease management in different epidemiological regions.


Phytopathology | 2017

Virulence and Molecular Characterization of Experimental Isolates of the Stripe Rust Pathogen (Puccinia striiformis) Indicate Somatic Recombination

Yu Lei; Meinan Wang; Anmin Wan; Chongjing Xia; Deven R. See; Min Zhang; Xianming Chen

Puccinia striiformis causes stripe rust on wheat, barley, and grasses. Natural population studies have indicated that somatic recombination plays a possible role in P. striiformis variation. To determine whether somatic recombination can occur, susceptible wheat or barley plants were inoculated with mixed urediniospores of paired isolates of P. striiformis. Progeny isolates were selected by passing through a series of inoculations of wheat or barley genotypes. Potential recombinant isolates were compared with the parental isolates on the set of 18 wheat or 12 barley genotypes that are used to differentiate races of P. striiformis f. sp. tritici (the wheat stripe rust pathogen) and P. striiformis f. sp. hordei (the barley stripe rust pathogen), respectively, for virulence changes. They were also tested with 51 simple-sequence repeat and 90 single-nucleotide polymorphism markers for genotype changes. From 68 possible recombinant isolates obtained from nine combinations of isolates based on virulence tests, 66 were proven to be recombinant isolates by molecular markers. Various types of recombinants were determined, including lost virulence from both virulent parental isolates, gained virulence from both avirulent isolates, combined virulences from both parents, and inherited virulence from one parent and avirulence from another. Marker data indicate that most of the recombinants were produced through chromosome reassortment and crossover after the hybridization of two parental isolates. The results demonstrate that somatic recombination is a mechanism by which new variants can be generated in P. striiformis.


Phytopathology | 2018

Characterization of Novel Gene Yr79 and Four Additional QTL for All-stage and High-temperature Adult-plant Resistance to Stripe Rust in Spring Wheat PI 182103

Junyan Feng; Meinan Wang; Deven R. See; Shiaoman Chao; Youliang Zheng; Xianming Chen

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of wheat worldwide. Exploring new resistance genes is essential for breeding resistant wheat cultivars. PI 182103, a spring wheat landrace originally from Pakistan, has shown a high level of resistance to stripe rust in fields for many years, but genes for resistance to stripe rust in the variety have not been studied. To map the resistance gene(s) in PI 182103, 185 recombinant inbred lines (RILs) were developed from a cross with Avocet Susceptible (AvS). The RIL population was genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism markers and tested with races PST-100 and PST-114 at the seedling stage under controlled greenhouse conditions and at the adult-plant stage in fields at Pullman and Mt. Vernon, Washington under natural infection by the stripe rust pathogen in 2011, 2012, and 2013. A total of five quantitative trait loci (QTL) were detected. QyrPI182103.wgp-2AS and QyrPI182103.wgp-3AL were detected at the seedling stage, QyrPI182103.wgp-4DL was detected only in Mt. Vernon field tests, and QyrPI182103.wgp-5BS was detected in both seedling and field tests. QyrPI182103.wgp-7BL was identified as a high-temperature adult-plant resistance gene and detected in all field tests. Interactions among the QTL were mostly additive, but some negative interactions were detected. The 7BL QTL was mapped in chromosomal bin 7BL 0.40 to 0.45 and identified as a new gene, permanently designated as Yr79. SSR markers Xbarc72 and Xwmc335 flanking the Yr79 locus were highly polymorphic in various wheat genotypes, indicating that the molecular markers are useful for incorporating the new gene for potentially durable stripe rust resistance into new wheat cultivars.


Phytopathology | 2018

Inheritance of Virulence, Construction of a Linkage Map, and Mapping Dominant Virulence Genes in Puccinia striiformis f. sp. tritici through Characterization of a Sexual Population with Genotyping-by-Sequencing

Congying Yuan; Meinan Wang; Danniel Z. Skinner; Deven R. See; Chongjing Xia; Xinhong Guo; Xianming Chen

Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen, is a dikaryotic, biotrophic, and macrocyclic fungus. Genetic study of P. striiformis f. sp. tritici virulence was not possible until the recent discovery of Berberis spp. and Mahonia spp. as alternate hosts. To determine inheritance of virulence and map virulence genes, a segregating population of 119 isolates was developed by self-fertilizing P. striiformis f. sp. tritici isolate 08-220 (race PSTv-11) on barberry leaves under controlled greenhouse conditions. The progeny isolates were phenotyped on a set of 29 wheat lines with single genes for race-specific resistance and genotyped with simple sequence repeat (SSR) markers, single nucleotide polymorphism (SNP) markers derived from secreted protein genes, and SNP markers from genotyping-by-sequencing (GBS). Using the GBS technique, 10,163 polymorphic GBS-SNP markers were identified. Clustering and principal component analysis grouped these markers into six genetic groups, and a genetic map, consisting of six linkage groups, was constructed with 805 markers. The six clusters or linkage groups resulting from these analyses indicated a haploid chromosome number of six in P. striiformis f. sp. tritici. Through virulence testing of the progeny isolates, the parental isolate was found to be homozygous for the avirulence loci corresponding to resistance genes Yr5, Yr10, Yr15, Yr24, Yr32, YrSP, YrTr1, Yr45, and Yr53 and homozygous for the virulence locus corresponding to resistance gene Yr41. Segregation was observed for virulence phenotypes in response to the remaining 19 single-gene lines. A single dominant gene or two dominant genes with different nonallelic gene interactions were identified for each of the segregating virulence phenotypes. Of 27 dominant virulence genes identified, 17 were mapped to two chromosomes. Markers tightly linked to some of the virulence loci may facilitate further studies to clone these genes. The virulence genes and their inheritance information are useful for understanding the host-pathogen interactions and for selecting effective resistance genes or gene combinations for developing stripe rust resistant wheat cultivars.


Frontiers in Microbiology | 2017

Secretome Characterization and Correlation Analysis Reveal Putative Pathogenicity Mechanisms and Identify Candidate Avirulence Genes in the Wheat Stripe Rust Fungus Puccinia striiformis f. sp. tritici

Chongjing Xia; Meinan Wang; Omar E. Cornejo; Derick A. Jiwan; Deven R. See; Xianming Chen

Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat worldwide. Planting resistant cultivars is an effective way to control this disease, but race-specific resistance can be overcome quickly due to the rapid evolving Pst population. Studying the pathogenicity mechanisms is critical for understanding how Pst virulence changes and how to develop wheat cultivars with durable resistance to stripe rust. We re-sequenced 7 Pst isolates and included additional 7 previously sequenced isolates to represent balanced virulence/avirulence profiles for several avirulence loci in seretome analyses. We observed an uneven distribution of heterozygosity among the isolates. Secretome comparison of Pst with other rust fungi identified a large portion of species-specific secreted proteins, suggesting that they may have specific roles when interacting with the wheat host. Thirty-two effectors of Pst were identified from its secretome. We identified candidates for Avr genes corresponding to six Yr genes by correlating polymorphisms for effector genes to the virulence/avirulence profiles of the 14 Pst isolates. The putative AvYr76 was present in the avirulent isolates, but absent in the virulent isolates, suggesting that deleting the coding region of the candidate avirulence gene has produced races virulent to resistance gene Yr76. We conclude that incorporating avirulence/virulence phenotypes into correlation analysis with variations in genomic structure and secretome, particularly presence/absence polymorphisms of effectors, is an efficient way to identify candidate Avr genes in Pst. The candidate effector genes provide a rich resource for further studies to determine the evolutionary history of Pst populations and the co-evolutionary arms race between Pst and wheat. The Avr candidates identified in this study will lead to cloning avirulence genes in Pst, which will enable us to understand molecular mechanisms underlying Pst-wheat interactions, to determine the effectiveness of resistance genes and further to develop durable resistance to stripe rust.


PLOS ONE | 2017

Mapping genes for resistance to stripe rust in spring wheat landrace PI 480035

Jinita Sthapit Kandel; Vandhana Krishnan; Derick Jiwan; Xianming Chen; Daniel Z. Skinner; Deven R. See

Stripe rust caused by Puccinia striiformis Westend. f. sp. tritici Erikks. is an economically important disease of wheat (Triticum aestivum L.). Hexaploid spring wheat landrace PI 480035 was highly resistant to stripe rust in the field in Washington during 2011 and 2012. The objective of this research was to identify quantitative trait loci (QTL) for stripe rust resistance in PI 480035. A spring wheat, “Avocet Susceptible” (AvS), was crossed with PI 480035 to develop a biparental population of 110 recombinant inbred lines (RIL). The population was evaluated in the field in 2013 and 2014 and seedling reactions were examined against three races (PSTv-14, PSTv-37, and PSTv-40) of the pathogen under controlled conditions. The population was genotyped with genotyping-by-sequencing and microsatellite markers across the whole wheat genome. A major QTL, QYr.wrsggl1-1BS was identified on chromosome 1B. The closest flanking markers were Xgwm273, Xgwm11, and Xbarc187 1.01 cM distal to QYr.wrsggl1-1BS, Xcfd59 0.59 cM proximal and XA365 3.19 cM proximal to QYr.wrsggl1-1BS. Another QTL, QYr.wrsggl1-3B, was identified on 3B, which was significant only for PSTv-40 and was not significant in the field, indicating it confers a race-specific resistance. Comparison with markers associated with previously reported Yr genes on 1B (Yr64, Yr65, and YrH52) indicated that QYr.wrsggl1-1BS is potentially a novel stripe rust resistance gene that can be incorporated into modern breeding materials, along with other all-stage and adult-plant resistance genes to develop cultivars that can provide durable resistance.

Collaboration


Dive into the Deven R. See's collaboration.

Top Co-Authors

Avatar

Xianming Chen

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Meinan Wang

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Shiaoman Chao

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Craig F. Morris

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Daniel Z. Skinner

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Chongjing Xia

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Alecia M. Kiszonas

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Anmin Wan

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Arron H. Carter

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge