Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Devin Mueller is active.

Publication


Featured researches published by Devin Mueller.


Neuropsychopharmacology | 2008

Neural Mechanisms of Extinction Learning and Retrieval

Gregory J. Quirk; Devin Mueller

Emotional learning is necessary for individuals to survive and prosper. Once acquired, however, emotional associations are not always expressed. Indeed, the regulation of emotional expression under varying environmental conditions is essential for mental health. The simplest form of emotional regulation is extinction, in which conditioned responding to a stimulus decreases when the reinforcer is omitted. Two decades of research on the neural mechanisms of fear conditioning have laid the groundwork for understanding extinction. In this review, we summarize recent work on the neural mechanisms of extinction learning. Like other forms of learning, extinction occurs in three phases: acquisition, consolidation, and retrieval, each of which depends on specific structures (amygdala, prefrontal cortex, hippocampus) and molecular mechanisms (receptors and signaling pathways). Pharmacological methods to facilitate consolidation and retrieval of extinction, for both aversive and appetitive conditioning, are setting the stage for novel treatments for anxiety disorders and addictions.


The Journal of Neuroscience | 2008

Noradrenergic Signaling in Infralimbic Cortex Increases Cell Excitability and Strengthens Memory for Fear Extinction

Devin Mueller; James T. Porter; Gregory J. Quirk

Emotional arousal strengthens memory. This is most apparent in aversive conditioning, in which the stress-related neurotransmitter norepinephrine (NE) enhances associations between sensory stimuli and fear-inducing events. In contrast to conditioning, extinction decreases fear responses, and is thought to form a new memory. It is not known, however, whether NE is necessary for extinction learning. Previous work has shown that the infralimbic prefrontal cortex (IL) is a site of extinction consolidation. Here, we show that blocking noradrenergic β-receptors in IL before extinction training impaired retrieval of extinction the following day, consistent with a weakened extinction memory. We further found that the sequelae of β-receptor activation, including protein kinase A (PKA), gene transcription and translation in IL, are necessary for extinction. To determine whether activation of this cascade modulates IL excitability, we measured the response of IL pyramidal neurons to injected current. NE increased the excitability of IL neurons in a β-receptor- and PKA-dependent manner. We suggest that NE released in IL during fear extinction activates a PKA-mediated molecular cascade that strengthens extinction memory. Thus, emotional arousal evoked by conditioned fear paradoxically promotes the subsequent extinction of that fear, thereby ensuring behavioral flexibility.


Behavioural Brain Research | 2010

Noradrenergic modulation of extinction learning and exposure therapy

Devin Mueller; Shawn P. Cahill

Memory consolidation is enhanced by emotional arousal, an effect mediated by noradrenergic beta-receptor signaling. Norepinephrine strengthens consolidation of both appetitive and aversive learning, and is implicated in extinction of conditioned responses. In this review, we summarize work on the noradrenergic mechanisms of extinction learning and implications for extinction-based exposure therapy. The evidence suggests that norepinephrine release evoked by conditioned stimuli during extinction strengthens extinction memory via beta-receptor signaling. The modulatory effect of norepinephrine during extinction depends on predictable presentation of conditioned stimuli and optimal levels of norepinephrine release. Mechanistically, norepinephrine acts to increase cellular excitability and enhance synaptic plasticity within extinction-related neural circuitry. Currently, drugs that modulate norepinephrine are being used to treat symptoms of anxiety disorders, and are now being tested as pharmacotherapeutic prophalactics in the prevention of chronic posttraumatic stress reactions and as adjuncts to extinction-based exposure therapy. Studies of these new applications of noradrenergic drugs show a converging pattern of results with basic science suggesting ways in which basic laboratory findings can be translated into procedures to enhance clinical outcomes.


The Journal of Neuroscience | 2013

Neurobiological Dissociation of Retrieval and Reconsolidation of Cocaine-Associated Memory

James M. Otis; Kidane B. Dashew; Devin Mueller

Drug use is provoked by the presentation of drug-associated cues, even following long periods of abstinence. Disruption of these learned associations would therefore limit relapse susceptibility. Drug-associated memories are susceptible to long-term disruption during retrieval and shortly after, during memory reconsolidation. Recent evidence reveals that retrieval and reconsolidation are dependent on β-adrenergic receptor (β-AR) activation. Despite this, whether retrieval and reconsolidation are dependent on identical or distinct neural mechanisms is unknown. The prelimbic medial prefrontal cortex (PL-mPFC) and basolateral amygdala (BLA) have been implicated in the expression and reconsolidation of associative memories. Therefore, we investigated the necessity of β-AR activation within the PL-mPFC and BLA for cocaine-associated memory retrieval and reconsolidation in rats. Before or immediately after a cocaine-induced conditioned place preference (CPP) retrieval trial, β-AR antagonists were infused into the PL-mPFC or BLA, followed by daily testing. PL-mPFC infusions before, but not after, a CPP trial disrupted CPP memory retrieval and induced a persistent deficit in retrieval during subsequent trials. In contrast, BLA β-AR blockade had no effect on initial CPP memory retrieval, but prevented CPP expression during subsequent trials indicative of reconsolidation disruption. Our results reveal a distinct dissociation between the neural mechanisms required for cocaine-associated memory retrieval and reconsolidation. Using patch-clamp electrophysiology, we also show that application of a β-AR antagonist prevents norepinephrine-induced potentiation of PL-mPFC pyramidal cell and γ-aminobutyric-acid (GABA) interneuron excitability. Thus, targeted β-AR blockade could induce long-term deficits in drug-associated memory retrieval by reducing neuronal excitability, providing a novel method of preventing cue-elicited drug seeking and relapse.


Neuropsychopharmacology | 2011

Inhibition of β -Adrenergic Receptors Induces a Persistent Deficit in Retrieval of a Cocaine-Associated Memory Providing Protection against Reinstatement

James M. Otis; Devin Mueller

Drug-seeking behavior is maintained by encounters with drug-associated cues. Preventing retrieval of drug-associated memories that these cues provoke would therefore limit relapse susceptibility; however, little is known regarding the mechanisms of retrieval. Here, we show that β-adrenergic receptor activation is necessary for the retrieval of a cocaine-associated memory. Using a conditioned place preference (CPP) procedure, rats were conditioned to associate one chamber, but not another, with cocaine. When administered before a CPP trial, propranolol, but not saline, prevented retrieval of a cocaine-associated CPP. In subsequent drug-free trials, rats previously treated with propranolol continued to show a retrieval deficit, as no CPP was evident. This retrieval deficit was long lasting and robust, as the CPP did not re-emerge during a test for spontaneous recovery 14 days later or reinstate following a priming injection of cocaine. Moreover, the peripheral β-adrenergic receptor antagonist sotalol did not affect retrieval. Thus, retrieval of cocaine-associated memories is mediated by norepinephrine acting at central β-adrenergic receptors. Our findings support the use of propranolol, a commonly prescribed β-blocker, as an adjunct to exposure therapy for the treatment of addiction by preventing retrieval of drug-associated memories during and long after treatment, and by providing protection against relapse.


The Journal of Neuroscience | 2014

Infralimbic BDNF/TrkB Enhancement of GluN2B Currents Facilitates Extinction of a Cocaine-Conditioned Place Preference

James M. Otis; Michael K. Fitzgerald; Devin Mueller

Brain-derived neurotrophic factor (BDNF) regulates synaptic activity and behavioral flexibility, and reduction of BDNF strongly predicts psychiatric disorders and cognitive dysfunction. Restoration of BDNF-dependent activity could alleviate these impairments, but BDNF has limited clinical utility due to its pharmacokinetics. Here we demonstrate that activation of a primary BDNF target, the tropomyosin-related kinase B (TrkB) receptor, enhances the amplitude and prolongs the decay kinetics of N-methyl-d-aspartate receptor (NMDAR) currents in male rat infralimbic prefrontal pyramidal neurons. Moreover, these effects were prevented and reversed by blockade of NMDARs containing the GluN2B subunit. Our results show that this signaling cascade bidirectionally regulates extinction of a cocaine-induced conditioned place preference (CPP), a task that requires behavioral flexibility. Blockade of infralimbic TrkB receptors or GluN2B-containing NMDARs disrupted consolidation of extinction of the CPP. In contrast, extinction was strengthened by potentiation of TrkB receptor activity with infralimbic infusions of BDNF or systemic injections of 7,8 dihydroxyflavone (7,8DHF), the newly synthesized TrkB receptor agonist. The 7,8DHF-induced enhancement of extinction was prevented by infralimbic infusions of a GluN2B-specific receptor antagonist, demonstrating that TrkB receptor activation enhances extinction of cocaine-CPP via GluN2B-containing NMDARs. Together, infralimbic TrkB receptor activation strengthens GluN2B-containing NMDAR currents to support extinction learning. TrkB receptor agonists would therefore be useful as pharmacological adjuncts for extinction-based therapies for treatment of psychiatric disorders associated with reduced BDNF activity.


Neuropsychopharmacology | 2015

Noradrenergic Regulation of Fear and Drug-Associated Memory Reconsolidation

James M. Otis; Craig T Werner; Devin Mueller

Emotional and traumatic experiences lead to the development of particularly strong memories that can drive neuropsychiatric disorders, such as posttraumatic stress disorder (PTSD) and drug addiction. Disruption of these memories would therefore serve as a powerful treatment option, and targeting the pathologic emotional, but not declarative, component of a memory would be ideal for clinical intervention. Research reveals that after retrieval of a consolidated memory, the memory can be destabilized, and must then be reconsolidated through synaptic plasticity to allow subsequent retrieval. Disruption of reconsolidation-related plasticity would therefore impair specific, reactivated memories. Noradrenergic signaling strengthens synaptic plasticity and is essential for encoding the emotional components of memory. Consistent with this, investigations have now revealed that noradrenergic signaling is a critical mechanism for reconsolidation of emotional memories in rodent and human models. Here, we discuss these investigations and promising clinical trials indicating that disruption of noradrenergic signaling during reconsolidation may abolish the pathologic emotional, but not declarative, component of memories allowing alleviation of neuropsychiatric disorders including PTSD and drug addiction.


Neuropsychopharmacology | 2014

Inhibition of Hippocampal β-Adrenergic Receptors Impairs Retrieval But Not Reconsolidation of Cocaine-Associated Memory and Prevents Subsequent Reinstatement

James M. Otis; Michael K. Fitzgerald; Devin Mueller

Retrieval of drug-associated memories is critical for maintaining addictive behaviors, as presentation of drug-associated cues can elicit drug seeking and relapse. Recently, we and others have demonstrated that β-adrenergic receptor (β-AR) activation is necessary for retrieval using both rat and human memory models. Importantly, blocking retrieval with β-AR antagonists persistently impairs retrieval and provides protection against subsequent reinstatement. However, the neural locus at which β-ARs are required for maintaining retrieval and subsequent reinstatement is unclear. Here, we investigated the necessity of dorsal hippocampus (dHipp) β-ARs for drug-associated memory retrieval. Using a cocaine conditioned place preference (CPP) model, we demonstrate that local dHipp β-AR blockade before a CPP test prevents CPP expression shortly and long after treatment, indicating that dHipp β-AR blockade induces a memory retrieval disruption. Furthermore, this retrieval disruption provides long-lasting protection against cocaine-induced reinstatement. The effects of β-AR blockade were dependent on memory reactivation and were not attributable to reconsolidation disruption as blockade of β-ARs immediately after a CPP test had little effect on subsequent CPP expression. Thus, cocaine-associated memory retrieval is mediated by β-AR activity within the dHipp, and disruption of this activity could prevent cue-induced drug seeking and relapse long after treatment.


Neuropsychopharmacology | 2015

Blocking Infralimbic Basic Fibroblast Growth Factor (bFGF or FGF2) Facilitates Extinction of Drug Seeking After Cocaine Self-Administration

Madalyn Hafenbreidel; Robert C. Twining; Carolynn Rafa Todd; Devin Mueller

Drug exposure results in structural and functional changes in brain regions that regulate reward and these changes may underlie the persistence of compulsive drug seeking and relapse. Neurotrophic factors, such as basic fibroblast growth factor (bFGF or FGF2), are necessary for neuronal survival, growth, and differentiation, and may contribute to these drug-induced changes. Following cocaine exposure, bFGF is increased in addiction-related brain regions, including the infralimbic medial prefrontal cortex (IL-mPFC). The IL-mPFC is necessary for extinction, but whether drug-induced overexpression of bFGF in this region affects extinction of drug seeking is unknown. Thus, we determined whether blocking bFGF in IL-mPFC would facilitate extinction following cocaine self-administration. Rats were trained to lever press for intravenous infusions of cocaine before extinction. Blocking bFGF in IL-mPFC before four extinction sessions resulted in facilitated extinction. In contrast, blocking bFGF alone was not sufficient to facilitate extinction, as blocking bFGF and returning rats to their home cage had no effect on subsequent extinction. Furthermore, bFGF protein expression increased in IL-mPFC following cocaine self-administration, an effect reversed by extinction. These results suggest that cocaine-induced overexpression of bFGF inhibits extinction, as blocking bFGF during extinction permits rapid extinction. Therefore, targeted reductions in bFGF during therapeutic interventions could enhance treatment outcomes for addiction.


Neuropsychopharmacology | 2017

Reversal of Cocaine-Associated Synaptic Plasticity in Medial Prefrontal Cortex Parallels Elimination of Memory Retrieval

James M. Otis; Devin Mueller

Addiction is characterized by abnormalities in prefrontal cortex that are thought to allow drug-associated cues to drive compulsive drug seeking and taking. Identification and reversal of these pathologic neuroadaptations are therefore critical for treatment of addiction. Previous studies using rodents reveal that drugs of abuse cause dendritic spine plasticity in prelimbic medial prefrontal cortex (PL-mPFC) pyramidal neurons, a phenomenon that correlates with the strength of drug-associated memories in vivo. Thus, we hypothesized that cocaine-evoked plasticity in PL-mPFC may underlie cocaine-associated memory retrieval, and therefore disruption of this plasticity would prevent retrieval. Indeed, using patch clamp electrophysiology we find that cocaine place conditioning increases excitatory presynaptic and postsynaptic transmission in rat PL-mPFC pyramidal neurons. This was accounted for by increases in excitatory presynaptic release, paired-pulse facilitation, and increased AMPA receptor transmission. Noradrenergic signaling is known to maintain glutamatergic plasticity upon reactivation of modified circuits, and we therefore next determined whether inhibition of noradrenergic signaling during memory reactivation would reverse the cocaine-evoked plasticity and/or disrupt the cocaine-associated memory. We find that administration of the β-adrenergic receptor antagonist propranolol before memory retrieval, but not after (during memory reconsolidation), reverses the cocaine-evoked presynaptic and postsynaptic modifications in PL-mPFC and causes long-lasting memory impairments. Taken together, these data reveal that cocaine-evoked synaptic plasticity in PL-mPFC is reversible in vivo, and suggest a novel strategy that would allow normalization of prefrontal circuitry in addiction.

Collaboration


Dive into the Devin Mueller's collaboration.

Top Co-Authors

Avatar

James M. Otis

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Michael K. Fitzgerald

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Madalyn Hafenbreidel

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Robert C. Twining

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Carolynn Rafa Todd

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer J. Tuscher

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hanna Yousuf

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge