Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Devinder Arora is active.

Publication


Featured researches published by Devinder Arora.


Toxins | 2016

Cellular Effects of Pyocyanin, a Secreted Virulence Factor of Pseudomonas aeruginosa

Susan Hall; Catherine McDermott; Shailendra Anoopkumar-Dukie; Amelia J. McFarland; Amanda Forbes; Anthony V. Perkins; Andrew K. Davey; Russ Chess-Williams; Milton J. Kiefel; Devinder Arora; Gary D. Grant

Pyocyanin has recently emerged as an important virulence factor produced by Pseudomonas aeruginosa. The redox-active tricyclic zwitterion has been shown to have a number of potential effects on various organ systems in vitro, including the respiratory, cardiovascular, urological, and central nervous systems. It has been shown that a large number of the effects to these systems are via the formation of reactive oxygen species. The limitations of studies are, to date, focused on the localized effect of the release of pyocyanin (PCN). It has been postulated that, given its chemical properties, PCN is able to readily cross biological membranes, however studies have yet to be undertaken to evaluate this effect. This review highlights the possible manifestations of PCN exposure; however, most studies to date are in vitro. Further high quality in vivo studies are needed to fully assess the physiological manifestations of PCN exposure on the various body systems.


International Journal of Molecular Sciences | 2014

Molecular Mechanisms Underlying the Effects of Statins in the Central Nervous System

Amelia J. McFarland; Shailendra Anoopkumar-Dukie; Devinder Arora; Gary D. Grant; Catherine McDermott; Anthony V. Perkins; Andrew K. Davey

3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, commonly referred to as statins, are widely used in the treatment of dyslipidaemia, in addition to providing primary and secondary prevention against cardiovascular disease and stroke. Statins’ effects on the central nervous system (CNS), particularly on cognition and neurological disorders such as stroke and multiple sclerosis, have received increasing attention in recent years, both within the scientific community and in the media. Current understanding of statins’ effects is limited by a lack of mechanism-based studies, as well as the assumption that all statins have the same pharmacological effect in the central nervous system. This review aims to provide an updated discussion on the molecular mechanisms contributing to statins’ possible effects on cognitive function, neurodegenerative disease, and various neurological disorders such as stroke, epilepsy, depression and CNS cancers. Additionally, the pharmacokinetic differences between statins and how these may result in statin-specific neurological effects are also discussed.


The Journal of Neuroscience | 2011

Acute Cocaine Exposure Weakens GABAB Receptor-Dependent G-Protein-Gated Inwardly Rectifying K+ Signaling in Dopamine Neurons of the Ventral Tegmental Area

Devinder Arora; Matthew C. Hearing; Desirae M. Haluk; Kelsey Mirkovic; Ana Fajardo-Serrano; Martin W. Wessendorf; Masahiko Watanabe; Rafael Luján; Kevin Wickman

Enhanced glutamatergic neurotransmission in dopamine (DA) neurons of the ventral tegmental area (VTA), triggered by a single cocaine injection, represents an early adaptation linked to the more enduring effects of abused drugs that characterize addiction. Here, we examined the impact of in vivo cocaine exposure on metabotropic inhibitory signaling involving G-protein-gated inwardly rectifying K+ (Girk) channels in VTA DA neurons. Somatodendritic Girk currents evoked by the GABAB receptor (GABABR) agonist baclofen were diminished in a dose-dependent manner in mice given a single cocaine injection. This adaptation persisted for 3–4 d, was specific for DA neurons of the VTA, and occurred in parallel with an increase in spontaneous glutamatergic neurotransmission. No additional suppression of GABABR–Girk signaling was observed following repeated cocaine administration. While total Girk2 and GABABR1 mRNA and protein levels were unaltered by cocaine exposure in VTA DA neurons, the cocaine-induced decrease in GABABR–Girk signaling correlated with a reduction in Girk2-containing channels at the plasma membrane in VTA DA neurons. Systemic pretreatment with sulpiride, but not SCH23390 (7-chloro-3-methyl-1-phenyl-1,2,4,5-tetrahydro-3-benzazepin-8-ol), prevented the cocaine-induced suppression of GABABR–Girk signaling, implicating D2/3 DA receptor activation in this adaptation. The acute cocaine-induced weakening of somatodendritic Girk signaling complements the previously demonstrated cocaine-induced strengthening of glutamatergic neurotransmission, likely contributing to enhanced output of VTA DA neurons during the early stages of addiction.


Neuropsychopharmacology | 2013

Hyposensitivity to Gamma-Aminobutyric Acid in the Ventral Tegmental Area During Alcohol Withdrawal: Reversal by Histone Deacetylase Inhibitors

Devinder Arora; Sudarat Nimitvilai; Tara Teppen; Maureen A. McElvain; Amul J. Sakharkar; Chang You; Subhash C. Pandey; Mark S. Brodie

Putative dopaminergic (pDAergic) ventral tegmental area (VTA) neurons have an important role in alcohol addiction. Acute ethanol increases the activity of pDAergic neurons, and withdrawal from repeated ethanol administration produces a decreased sensitivity of pDAergic VTA neurons to GABA. Recent studies show that behavioral changes induced by chronic alcohol are reversed by inhibitors of histone deacetylases (HDACs). Whether HDAC-induced histone modifications regulate changes in GABA sensitivity of VTA pDAergic neurons during withdrawal is unknown. Here, we investigated modulation of withdrawal-induced changes in GABA sensitivity of pDAergic VTA neurons by HDAC inhibitors (HDACi), and also measured the levels of HDAC2, histone (H3-K9) acetylation, and GABA-Aα1 receptor (GABA (A-α1) R) subunit in VTA during ethanol withdrawal. Mice were injected intraperitoneally (ip) with either ethanol (3.5 g/kg) or saline twice daily for 3 weeks. In recordings from pDAergic VTA neurons in brain slices from ethanol-withdrawn mice, sensitivity to GABA (50–500 μM) was reduced. In brain slices from ethanol-withdrawn mice incubated with the HDACi SAHA (vorinostat) or trichostatin A (TSA) for 2 h, the hyposensitivity of pDAergic VTA neurons to GABA was significantly attenuated. There was no effect of TSA or SAHA on GABA sensitivity of pDAergic VTA neurons from saline-treated mice. In addition, ethanol withdrawal was associated with an increase in levels of HDAC2 and a decrease in histone (H3-K9) acetylation and levels of GABA (A-α1) R subunits in the VTA. Therefore, blockade of upregulation of HDAC2 by HDACi normalizes GABA hyposensitivity of pDAergic neurons developed during withdrawal after chronic ethanol treatment, which suggests the possibility that inhibition of HDACs can reverse ethanol-induced neuroadaptational changes in reward circuitry.


Journal of Neurochemistry | 2010

Altered neurotransmission in the mesolimbic reward system of Girk mice.

Devinder Arora; Desirae M. Haluk; Saïd Kourrich; Marco Pravetoni; Laura Fernández-Alacid; Joel C. Nicolau; Rafael Luján; Kevin Wickman

J. Neurochem. (2010) 114, 1487–1497.


Food Research International | 2015

A review of the bioactivity of coffee, caffeine and key coffee constituents on inflammatory responses linked to depression

Susan Hall; Ben Desbrow; Shailendra Anoopkumar-Dukie; Andrew K. Davey; Devinder Arora; Catherine McDermott; Matthew M. Schubert; Anthony V. Perkins; Milton J. Kiefel; Gary D. Grant

Coffee is a widely consumed beverage containing numerous biologically active constituents predominantly belonging to the polyphenol and alkaloid classes. It has been established that coffee has a beneficial effect on numerous disease states including depression. A number of prospective and retrospective cohort studies have assessed the effects of coffee consumption on the relative risk of developing major depressive disorder in humans. These studies have identified an inverse relationship between the consumption of caffeinated coffee and the risk of developing depression. Caffeine, chlorogenic acid, ferulic acid and caffeic acid, all important constituents of coffee, have been shown to possess biological activities that highlight a possible mechanistic link to the pathology of depression. This review aims to assess the evidence from the biological evaluation of these constituents of coffee on markers of inflammation associated with depression in in vitro and in vivo models of inflammation, neuroinflammation and depression. The ability of bioactive coffee constituents to modulate the parameters of neuroinflammation has been shown with caffeine having strong antioxidant properties in vitro, chlorogenic acid and caffeic acid having strong anti-inflammatory and antioxidant properties in vitro and ferulic acid having activities in in vivo animal models of depression.


The Journal of Neuroscience | 2015

GIRK channels modulate opioid-induced motor activity in a cell type- and subunit-dependent manner

Lydia Kotecki; Matthew C. Hearing; Nora McCall; Ezequiel Marron Fernandez de Velasco; Marco Pravetoni; Devinder Arora; Nicole C. Victoria; Michaelanne B. Munoz; Zhilian Xia; Paul A. Slesinger; C. David Weaver; Kevin Wickman

G-protein-gated inwardly rectifying K+ (GIRK/Kir3) channel activation underlies key physiological effects of opioids, including analgesia and dependence. GIRK channel activation has also been implicated in the opioid-induced inhibition of midbrain GABA neurons and consequent disinhibition of dopamine (DA) neurons in the ventral tegmental area (VTA). Drug-induced disinhibition of VTA DA neurons has been linked to reward-related behaviors and underlies opioid-induced motor activation. Here, we demonstrate that mouse VTA GABA neurons express a GIRK channel formed by GIRK1 and GIRK2 subunits. Nevertheless, neither constitutive genetic ablation of Girk1 or Girk2, nor the selective ablation of GIRK channels in GABA neurons, diminished morphine-induced motor activity in mice. Moreover, direct activation of GIRK channels in midbrain GABA neurons did not enhance motor activity. In contrast, genetic manipulations that selectively enhanced or suppressed GIRK channel function in midbrain DA neurons correlated with decreased and increased sensitivity, respectively, to the motor-stimulatory effect of systemic morphine. Collectively, these data support the contention that the unique GIRK channel subtype in VTA DA neurons, the GIRK2/GIRK3 heteromer, regulates the sensitivity of the mouse mesolimbic DA system to drugs with addictive potential.


Neuropsychopharmacology | 2012

Reversal of dopamine inhibition of dopaminergic neurons of the ventral tegmental area is mediated by protein kinase C.

Sudarat Nimitvilai; Devinder Arora; Mark S. Brodie

Adaptation of putative dopaminergic (pDA) neurons in the ventral tegmental area (VTA) to drugs of abuse may alter information processing related to reward and reinforcement and is an important factor in the development of addiction. We have demonstrated that prolonged increases in the concentration of dopamine (DA) result in a time-dependent decrease in sensitivity of pDA neurons to DA, which we termed DA inhibition reversal (DIR). In this study, we used extracellular recordings to examine factors mediating DIR. A 40 min administration of DA (2.5–10 μM), but not the DA D2 receptor agonist quinpirole (50–200 nM), resulted in inhibition of neuronal firing followed by DIR. In the presence of 100 nM cocaine, inhibition followed by DIR was seen with much lower DA concentrations. Reversal of quinpirole inhibition could be induced by an activator of protein kinase C, but not of protein kinase A. Inhibitors of protein kinase C or phospholipase C blocked the development of DIR. Disruption of intracellular calcium release also prevented DIR. Reduction of extracellular calcium or inhibition of store-operated calcium entry blocked DIR, but the L-type calcium channel blocker nifedipine did not. DIR was age-dependent and not seen in pDA VTA neurons from rat pups younger than 15 days postnatally. Our data indicate that DIR is mediated by protein kinase C, and implicate a conventional protein kinase C. This characterization of DIR gives insight into the regulation of autoinhibition of pDA VTA neurons, and the resulting long-term alteration in information processing related to reward and reinforcement.


Antioxidants | 2016

Protection against radiotherapy-induced toxicity

Susan Hall; Santosh Rudrawar; Matthew Stephen Zunk; Nijole Bernaitis; Devinder Arora; Catherine McDermott; Shailendra Anoopkumar-Dukie

Radiation therapy is a highly utilized therapy in the treatment of malignancies with up to 60% of cancer patients receiving radiation therapy as a part of their treatment regimen. Radiation therapy does, however, cause a wide range of adverse effects that can be severe and cause permanent damage to the patient. In an attempt to minimize these effects, a small number of compounds have been identified and are in use clinically for the prevention and treatment of radiation associated toxicities. Furthermore, there are a number of emerging therapies being developed for use as agents that protect against radiation-induced toxicities. The aim of this review was to evaluate and summarise the evidence that exists for both the known radioprotectant agents and the agents that show promise as future radioprotectant agents.


Neuropharmacology | 2014

Dopamine D2 receptor desensitization by dopamine or corticotropin releasing factor in ventral tegmental area neurons is associated with increased glutamate release.

Sudarat Nimitvilai; Melissa A. Herman; Chang You; Devinder Arora; Maureen A. McElvain; Marisa Roberto; Mark S. Brodie

Neurons of the ventral tegmental area (VTA) are the source of dopaminergic (DAergic) input to important brain regions related to addiction. Prolonged exposure of these VTA neurons to moderate concentrations of dopamine (DA) causes a time-dependent decrease in DA-induced inhibition, a complex desensitization called DA inhibition reversal (DIR). DIR is mediated by conventional protein kinase C (cPKC) through concurrent stimulation of D2 and D1-like DA receptors, or by D2 stimulation concurrent with activation of some Gq-linked receptors. Corticotropin releasing factor (CRF) acts via Gq, and can modulate glutamater neurotransmission in the VTA. In the present study, we used brain slice electrophysiology to characterize the interaction of DA, glutamate antagonists, and CRF agonists in the induction and maintenance of DIR in the VTA. Glutamate receptor antagonists blocked induction but not maintenance of DIR. Putative blockers of neurotransmitter release and store-operated calcium channels blocked and reversed DIR. CRF and the CRF agonist urocortin reversed inhibition produced by the D2 agonist quinpirole, consistent with our earlier work indicating that Gq activation reverses quinpirole-mediated inhibition. In whole cell recordings, the combination of urocortin and quinpirole, but not either agent alone, increased spontaneous excitatory postsynaptic currents (sEPSCs) in VTA neurons. Likewise, the combination of a D1-like receptor agonist and quinpirole, but not either agent alone, increased sEPSCs in VTA neurons. In summary, desensitization of D2 receptors induced by dopamine or CRF on DAergic VTA neurons is associated with increased glutamatergic signaling in the VTA.

Collaboration


Dive into the Devinder Arora's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark S. Brodie

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Sudarat Nimitvilai

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Maureen A. McElvain

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge