Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Devrim Coskun is active.

Publication


Featured researches published by Devrim Coskun.


Plant and Soil | 2013

Sodium as nutrient and toxicant

Herbert J. Kronzucker; Devrim Coskun; Lasse M. Schulze; Jessie R. Wong; Dev T. Britto

BackgroundSodium (Na+) is one of the most intensely researched ions in plant biology and has attained a reputation for its toxic qualities. Following the principle of Theophrastus Bombastus von Hohenheim (Paracelsus), Na+ is, however, beneficial to many species at lower levels of supply, and in some, such as certain C4 species, indeed essential.ScopeHere, we review the ion’s divergent roles as a nutrient and toxicant, focusing on growth responses, membrane transport, stomatal function, and paradigms of ion accumulation and sequestration. We examine connections between the nutritional and toxic roles throughout, and place special emphasis on the relationship of Na+ to plant potassium (K+) relations and homeostasis.ConclusionsOur review investigates intriguing connections and disconnections between Na+ nutrition and toxicity, and concludes that several leading paradigms in the field, such as on the roles of Na+ influx and tissue accumulation or the cytosolic K+/Na+ ratio in the development of toxicity, are currently insufficiently substantiated and require a new, critical approach.


New Phytologist | 2010

42K analysis of sodium-induced potassium efflux in barley: mechanism and relevance to salt tolerance

Dev T. Britto; Sasha Ebrahimi-Ardebili; Ahmed M. Hamam; Devrim Coskun; Herbert J. Kronzucker

*Stimulation of potassium (K(+)) efflux by sodium (Na(+)) has been the subject of much recent attention, and its mechanism has been attributed to the activities of specific classes of ion channels. *The short-lived radiotracer (42)K(+) was used to test this attribution, via unidirectional K(+)-flux analysis at the root plasma membrane of intact barley (Hordeum vulgare), in response to NaCl, KCl, NH(4)Cl and mannitol, and to channel inhibitors. *Unidirectional K(+) efflux was strongly stimulated by NaCl, and K(+) influx strongly suppressed. Both effects were ameliorated by elevated calcium (Ca(2+)). As well, K(+) efflux was strongly stimulated by KCl, NH(4)Cl and mannitol , and NaCl also stimulated (13)NH(4)(+) efflux. The Na(+)-stimulated K(+) efflux was insensitive to cesium (Cs(+)) and pH 4.2, weakly sensitive to the K(+)-channel blocker tetraethylammonium (TEA(+)) and quinine, and moderately sensitive to zinc (Zn(2+)) and lanthanum (La(3+)). *We conclude that the stimulated efflux is: specific neither to Na(+) as effector nor K(+) as target; composed of fluxes from both cytosol and vacuole; mediated neither by outwardly-rectifying K(+) channels nor nonselective cation channels; attributable, alternatively, to membrane disintegration brought about by ionic and osmotic components; of limited long-term significance, unlike the suppression of K(+) influx by Na(+), which is a greater threat to K(+) homeostasis under salt stress.


Plant Physiology | 2013

Rapid Ammonia Gas Transport Accounts for Futile Transmembrane Cycling under NH3/NH4+ Toxicity in Plant Roots

Devrim Coskun; Dev T. Britto; Mingyuan Li; Alexander Becker; Herbert J. Kronzucker

Fluxes of NH3, but not NH4+, account for futile cycling across both plasmalemma and tonoplast in roots of barley, resulting in a thermodynamic NH3 equilibrium between cytosol, vacuole, and external solution, and aquaporins are likely mediators of these fluxes. Futile transmembrane NH3/NH4+ cycling in plant root cells, characterized by extremely rapid fluxes and high efflux to influx ratios, has been successfully linked to NH3/NH4+ toxicity. Surprisingly, the fundamental question of which species of the conjugate pair (NH3 or NH4+) participates in such fluxes is unresolved. Using flux analyses with the short-lived radioisotope 13N and electrophysiological, respiratory, and histochemical measurements, we show that futile cycling in roots of barley (Hordeum vulgare) seedlings is predominately of the gaseous NH3 species, rather than the NH4+ ion. Influx of 13NH3/13NH4+, which exceeded 200 µmol g–1 h–1, was not commensurate with membrane depolarization or increases in root respiration, suggesting electroneutral NH3 transport. Influx followed Michaelis-Menten kinetics for NH3 (but not NH4+), as a function of external concentration (Km = 152 µm, Vmax = 205 µmol g–1 h–1). Efflux of 13NH3/13NH4+ responded with a nearly identical Km. Pharmacological characterization of influx and efflux suggests mediation by aquaporins. Our study fundamentally revises the futile-cycling model by demonstrating that NH3 is the major permeating species across both plasmalemma and tonoplast of root cells under toxicity conditions.


Plant Physiology | 2013

Capacity and Plasticity of Potassium Channels and High-Affinity Transporters in Roots of Barley and Arabidopsis

Devrim Coskun; Dev T. Britto; Mingyuan Li; Saehong Oh; Herbert J. Kronzucker

Steady-state K+ uptake mechanisms differ between NH4+-grown barley and Arabidopsis. Sudden NH4+ withdrawal uncovers dramatic capacity and plasticity of K+ transport among the two model species. The role of potassium (K+) transporters in high- and low-affinity K+ uptake was examined in roots of intact barley (Hordeum vulgare) and Arabidopsis (Arabidopsis thaliana) plants by use of 42K radiotracing, electrophysiology, pharmacology, and mutant analysis. Comparisons were made between results from barley and five genotypes of Arabidopsis, including single and double knockout mutants for the high-affinity transporter, AtHAK5, and the Shaker-type channel, AtAKT1. In Arabidopsis, steady-state K+ influx at low external K+ concentration ([K+]ext = 22.5 µm) was predominantly mediated by AtAKT1 when high-affinity transport was inhibited by ammonium, whereas in barley, by contrast, K+ channels could not operate below 100 µm. Withdrawal of ammonium resulted in an immediate and dramatic stimulation of K+ influx in barley, indicating a shift from active to passive K+ uptake at low [K+]ext and yielding fluxes as high as 36 µmol g (root fresh weight)−1 h−1 at 5 mm [K+]ext, among the highest transporter-mediated K+ fluxes hitherto reported. This ammonium-withdrawal effect was also established in all Arabidopsis lines (the wild types, atakt1, athak5, and athak5 atakt1) at low [K+]ext, revealing the concerted involvement of several transport systems. The ammonium-withdrawal effect coincided with a suppression of K+ efflux and a significant hyperpolarization of the plasma membrane in all genotypes except athak5 atakt1, could be sustained over 24 h, and resulted in increased tissue K+ accumulation. We discuss key differences and similarities in K+ acquisition between two important model systems and reveal novel aspects of K+ transport in planta.


Frontiers in Plant Science | 2016

The Role of Silicon in Higher Plants under Salinity and Drought Stress

Devrim Coskun; Dev T. Britto; Wayne Q. Huynh; Herbert J. Kronzucker

Although deemed a “non-essential” mineral nutrient, silicon (Si) is clearly beneficial to plant growth and development, particularly under stress conditions, including salinity and drought. Here, we review recent research on the physiological, biochemical, and molecular mechanisms underlying Si-induced alleviation of osmotic and ionic stresses associated with salinity and drought. We distinguish between changes observed in the apoplast (i.e., suberization, lignification, and silicification of the extracellular matrix; transpirational bypass flow of solutes and water), and those of the symplast (i.e., transmembrane transport of solutes and water; gene expression; oxidative stress; metabolism), and discuss these features in the context of Si biogeochemistry and bioavailability in agricultural soils, evaluating the prospect of using Si fertilization to increase crop yield and stress tolerance under salinity and drought conditions.


Journal of Experimental Botany | 2012

Silver ions disrupt K+ homeostasis and cellular integrity in intact barley (Hordeum vulgare L.) roots

Devrim Coskun; Dev T. Britto; Yuel-Kai Jean; Lasse M. Schulze; Alexander Becker; Herbert J. Kronzucker

The heavy metals silver, gold, and mercury can strongly inhibit aquaporin-mediated water flow across plant cell membranes, but critical examinations of their side effects are rare. Here, the short-lived radiotracer 42K is used to demonstrate that these metals, especially silver, profoundly change potassium homeostasis in roots of intact barley (Hordeum vulgare L.) plants, by altering unidirectional K+ fluxes. Doses as low as 5 μM AgNO3 rapidly reduced K+ influx to 5% that of controls, and brought about pronounced and immediate increases in K+ efflux, while higher doses of Au3+ and Hg2+ were required to produce similar responses. Reduced influx and enhanced efflux of K+ resulted in a net loss of >40% of root tissue K+ during a 15 min application of 500 μM AgNO3, comprising the entire cytosolic potassium pool and about a third of the vacuolar pool. Silver also brought about major losses of UV-absorbing compounds, total electrolytes, and NH4+. Co-application, with silver, of the channel blockers Cs+, TEA+, or Ca2+, did not affect the enhanced efflux, ruling out the involvement of outwardly rectifying ion channels. Taken together with an examination of propidium iodide staining under confocal microscopy, the results indicate that silver ions affect K+ homeostasis by directly inhibiting K+ influx at lower concentrations, and indirectly inhibiting K+ influx and enhancing K+ efflux, via membrane destruction, at higher concentrations. Ni2+, Cd2+, and Pb2+, three heavy metals not generally known to affect aquaporins, did not enhance K+ efflux or cause propidium iodide incorporation. The study reveals strong and previously unknown effects of major aquaporin inhibitors and recommends caution in their application.


New Phytologist | 2010

Regulation and mechanism of potassium release from barley roots: an in planta42K+ analysis

Devrim Coskun; Dev T. Britto; Herbert J. Kronzucker

Potassium (K(+) ) flux into plant cells is a well-characterized ion transport phenomenon. By contrast, little is known about the mechanisms and regulation of K(+) flux from the cell. Here, we present a radioisotopic analysis of K(+) fluxes from roots of intact barley (Hordeum vulgare), in the context of recent discoveries in the molecular biology and electrophysiology of this process. Plants were labelled with (42)K(+), and kinetics of its release from roots were monitored at low (0.1 mM) or high (1.0 mM) external K concentration, [K(+)](ext), and with the application of channel modulators and nutrient shifts. At 0.1 (but not 1.0) mM [K(+)], where K(+) efflux is thought to be mediated by K(+)-outward-rectifying channels, (42)K(+) efflux was inhibited by the channel blockers barium (Ba(2+)), caesium (Cs(+)), tetraethylammonium (TEA(+)), and lanthanum (La(3+)). Ammonium and nitrate (10 mM) stimulated and inhibited (42)K(+) efflux, respectively, while 10 mM [K(+)](ext) or [Rb(+) ](ext) decreased it. No evidence for the involvement of ATP-binding cassettes, nonselective cation channels, or active K(+)-efflux pumps was found. Our study provides new evidence for the thermodynamic transition between high- and low-affinity transport, from the efflux perspective, identifying the operation of channels at low [K(+)], and the cessation of transmembrane efflux at high [K(+)].


PLOS ONE | 2013

K+ Efflux and Retention in Response to NaCl Stress Do Not Predict Salt Tolerance in Contrasting Genotypes of Rice (Oryza sativa L.)

Devrim Coskun; Dev T. Britto; Yuel-Kai Jean; Imtiaz Kabir; İnci Tolay; Ayfer Alkan Torun; Herbert J. Kronzucker

Sudden elevations in external sodium chloride (NaCl) accelerate potassium (K+) efflux across the plasma membrane of plant root cells. It has been proposed that the extent of this acceleration can predict salt tolerance among contrasting cultivars. However, this proposal has not been considered in the context of plant nutritional history, nor has it been explored in rice (Oryza sativa L.), which stands among the world’s most important and salt-sensitive crop species. Using efflux analysis with 42K, coupled with growth and tissue K+ analyses, we examined the short- and long-term effects of NaCl exposure to plant performance within a nutritional matrix that significantly altered tissue-K+ set points in three rice cultivars that differ in salt tolerance: IR29 (sensitive), IR72 (moderate), and Pokkali (tolerant). We show that total short-term K+ release from roots in response to NaCl stress is small (no more than 26% over 45 min) in rice. Despite strong varietal differences, the extent of efflux is shown to be a poor predictor of plant performance on long-term NaCl stress. In fact, no measure of K+ status was found to correlate with plant performance among cultivars either in the presence or absence of NaCl stress. By contrast, shoot Na+ accumulation showed the strongest correlation (a negative one) with biomass, under long-term salinity. Pharmacological evidence suggests that NaCl-induced K+ efflux is a result of membrane disintegrity, possibly as result of osmotic shock, and not due to ion-channel mediation. Taken together, we conclude that, in rice, K+ status (including efflux) is a poor predictor of salt tolerance and overall plant performance and, instead, shoot Na+ accumulation is the key factor in performance decline on NaCl stress.


Trends in Plant Science | 2017

How Plant Root Exudates Shape the Nitrogen Cycle

Devrim Coskun; Dev T. Britto; Weiming Shi; Herbert J. Kronzucker

Although the global nitrogen (N) cycle is largely driven by soil microbes, plant root exudates can profoundly modify soil microbial communities and influence their N transformations. A detailed understanding is now beginning to emerge regarding the control that root exudates exert over two major soil N processes - nitrification and N2 fixation. We discuss recent breakthroughs in this area, including the identification of root exudates as nitrification inhibitors and as signaling compounds facilitating N-acquisition symbioses. We indicate gaps in current knowledge, including questions of how root exudates affect newly discovered microbial players and N-cycle components. A better understanding of these processes is urgent given the widespread inefficiencies in agricultural N use and their links to N pollution and climate change.


Nature plants | 2017

Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition

Devrim Coskun; Dev T. Britto; Weiming Shi; Herbert J. Kronzucker

The nitrogen (N)-use efficiency of agricultural plants is notoriously poor. Globally, about 50% of the N fertilizer applied to cropping systems is not absorbed by plants, but lost to the environment as ammonia (NH3), nitrate (NO3−), and nitrous oxide (N2O, a greenhouse gas with 300 times the heat-trapping capacity of carbon dioxide), raising agricultural production costs and contributing to pollution and climate change. These losses are driven by volatilization of NH3 and by a matrix of nitrification and denitrification reactions catalysed by soil microorganisms (chiefly bacteria and archaea). Here, we discuss mitigation of the harmful and wasteful process of agricultural N loss via biological nitrification inhibitors (BNIs) exuded by plant roots. We examine key recent discoveries in the emerging field of BNI research, focusing on BNI compounds and their specificity and transport, and discuss prospects for their role in improving agriculture while reducing its environmental impact.

Collaboration


Dive into the Devrim Coskun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weiming Shi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge