Deyarina Gonzalez
Swansea University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Deyarina Gonzalez.
Phytotherapy Research | 2001
Gabino Garrido; Deyarina Gonzalez; Carla Delporte; Nadine Backhouse; Gypsy Quintero; Alberto J. Núñez-Sellés; Miguel A. Morales
Vimang is an aqueous extract of Mangifera indica used in Cuba to improve the quality of life in patients suffering from elevated stress. To assess its possible analgesic and antiinflammatory effects, the results of a standard extract evaluation are presented. Analgesia was determined using acetic acid‐induced abdominal constriction and formalin‐induced licking. Antiinflammatory effects were evaluated using carrageenan‐ and formalin‐induced oedema. Vimang (50–1000 mg/kg, p.o.) exhibited a potent and dose‐dependent antinociceptive effect against acetic acid test in mice. The mean potency (DE50) was 54.5 mg/kg and the maximal inhibition attained was 94.4%. Vimang (20–1000 mg/kg, p.o.) dose‐dependently inhibited the second phase of formalin‐induced pain but not the first phase. The DE50 of the second phase was 8.4 mg/kg and the maximal inhibition was 99.5%, being more potent than indomethacin at doses of 20 mg/kg. Vimang (20–1000 mg/kg, p.o.) significantly inhibited oedema formation (p < 0.01 or p < 0.05) of both carrageenan‐ and formalin‐induced oedema in rat, guinea‐pigs and mice (maximal inhibitions: 39.5, 45.0 and 48.6, respectively). The inhibitions were similar to those produced by indomethacin and sodium naproxen, p.o. The different polyphenols found in Vimang could account for the antinociceptive and antiinflammatory actions reported here for the first time for M. indica bark aqueous extract. Copyright
Reproductive Biology and Endocrinology | 2008
Darren Davies; Kieran G. Meade; Shan Herath; P. David Eckersall; Deyarina Gonzalez; John O. White; R. Steven Conlan; Cliona O'Farrelly; I. Martin Sheldon
BackgroundThe endometrium is commonly infected with bacteria leading to severe disease of the uterus in cattle and humans. The endometrial epithelium is the first line of defence for this mucosal surface against bacteria and Toll-like receptors (TLRs) are a critical component of the innate immune system for detection of pathogen associated molecular patterns (PAMPs). Antimicrobial peptides, acute phase proteins and Mucin-1 (MUC-1) also provide non-specific defences against microbes on mucosal surfaces. The present study examined the expression of innate immune defences in the bovine endometrium and tested the hypothesis that endometrial epithelial cells express functional receptors of the TLR family and the non-specific effector molecules for defence against bacteria.MethodsBovine endometrial tissue and purified populations of primary epithelial and stromal cells were examined using RT-PCR for gene expression of TLRs, antimicrobial peptides and MUC-1. Functional responses were tested by evaluating the secretion of prostaglandin E2 and acute phase proteins when cells were treated with bacterial PAMPs such as bacterial lipopolysaccharide (LPS) and lipoproteins.ResultsThe endometrium expressed TLRs 1 to 10, whilst purified populations of epithelial cells expressed TLRs 1 to 7 and 9, and stromal cells expressed TLRs 1 to 4, 6, 7, 9 and 10. The TLRs appear to be functional as epithelial cells secreted prostaglandin E2 in response to bacterial PAMPs. In addition, the epithelial cells expressed antimicrobial peptides, such as Tracheal and Lingual Antimicrobial Peptides (TAP and LAP) and MUC-1, which were upregulated when the cells were treated with LPS. However, the epithelial cells did not express appreciable amounts of the acute phase proteins haptoglobin or serum amyloid A.ConclusionEpithelial cells have an essential role in the orchestration of innate immune defence of the bovine endometrium and are likely to be the key to prevention of endometrial infection with bacteria.
Molecular and Cellular Biology | 2007
Deyarina Gonzalez; Adam J. Bowen; Thomas S. Carroll; R. Steven Conlan
ABSTRACT Transcription corepressors are general regulators controlling the expression of genes involved in multiple signaling pathways and developmental programs. Repression is mediated through mechanisms including the stabilization of a repressive chromatin structure over control regions and regulation of Mediator function inhibiting RNA polymerase II activity. Using whole-genome arrays we show that the Arabidopsis thaliana corepressor LEUNIG, a member of the GroTLE transcription corepressor family, regulates the expression of multiple targets in vivo. LEUNIG has a role in the regulation of genes involved in a number of different physiological processes including disease resistance, DNA damage response, and cell signaling. We demonstrate that repression of in vivo LEUNIG targets is achieved through histone deacetylase (HDAC)-dependent and -independent mechanisms. HDAC-dependent mechanisms involve direct interaction with HDA19, a class 1 HDAC, whereas an HDAC-independent repression activity involves interactions with the putative Arabidopsis Mediator components AtMED14/SWP and AtCDK8/HEN3. We suggest that changes in chromatin structure coupled with regulation of Mediator function are likely to be utilized by LEUNIG in the repression of gene transcription.
Biochemical Journal | 2001
Karel Otero; Fernando O. Martinez; Amada Beltrán; Deyarina Gonzalez; Beatriz Herrera; Gypsy Quintero; René Delgado; Armando Rojas
Endothelial cell (EC) junctions regulate in large part the integrity and barrier function of the vascular endothelium. Advanced glycation end-products (AGEs), the irreversibly formed reactive derivatives of non-enzymic glucose-protein condensation reactions, are strongly implicated in endothelial dysfunction that distinguishes diabetes- and aging-associated vascular complications. The aim of the present study was to determine whether AGEs affect EC lateral junction proteins, with particular regard to the vascular endothelial cadherin (VE-cadherin) complex. Our results indicate that AGE-modified BSA (AGE-BSA), a prototype of advanced glycated proteins, disrupts the VE-cadherin complex when administered to ECs. AGE-BSA, but not unmodified BSA, was found to induce decreases in the levels of VE-cadherin, beta-catenin and gamma-catenin in the complex and in total cell extracts, as well as a marked reduction in the amount of VE-cadherin present at the cell surface. In contrast, the level of platelet endothelial cell adhesion molecule-1 (PECAM-1), which is located at lateral junctions, was not altered. Supplementation of the cellular antioxidative defences abolished these effects. Finally, the loss of components of the VE-cadherin complex was correlated with increases in vascular permeability and in EC migration. These findings suggest that some of the AGE-induced biological effects on the endothelium could be mediated, at least in part, by the weakening of intercellular contacts caused by decreases in the amount of VE-cadherin present.
Human Reproduction | 2009
Lavinia Margarit; Deyarina Gonzalez; Paul D. Lewis; L. Hopkins; C. Davies; Robert Steven Conlan; Lisa A. Joels; John O. White
BACKGROUND L-selectin ligands, localized to the luminal epithelium at the time of implantation, may support the early stages of blastocyst attachment. We have assessed the expression of two L-selectin ligands, defined by MECA-79 and HECA-452 monoclonal antibodies, and the sulfotransferase GlcNAc6ST-2, involved in generation of L-selectin ligand epitopes, in the secretory phase of the endometrium from fertile and infertile patients. METHODS Endometrial samples were obtained from 33 fertile, 26 PCOS, 25 endometriosis and 33 patients diagnosed with unexplained infertility. L-selectin ligands and GlcNAc6ST-2 expression was assessed by immunohistochemistry and immunoblotting. RESULTS Immunohistochemical staining of uterine epithelium, from fertile and infertile women, demonstrated differential expression of MECA-79 and HECA-452 epitopes. In fertile women in the secretory phase MECA-79 was more strongly expressed, particularly on the lumen, than in infertile women. HECA-452 staining was significantly stronger in the glands in PCOS and endometriosis patients than in fertile women. GlcNAc6ST-2 expression was reduced in infertile patients, correlating with MECA-79 expression. CONCLUSIONS This study demonstrated significant differences in expression of L-selectin ligands between fertile and infertile women in natural cycles, and could contribute to patient assessment prior to initiating fertility treatment.
The Journal of Clinical Endocrinology and Metabolism | 2010
Lavinia Margarit; A. Taylor; M. H. Roberts; L. Hopkins; C. Davies; A.G. Brenton; Robert Steven Conlan; A. Bunkheila; Lisa A. Joels; John O. White; Deyarina Gonzalez
CONTEXT Endometrium of fertile women expresses progesterone-regulated Mucin 1 (MUC1) that carries selectin ligands recognized by the human blastocyst. Altered MUC1 expression at the time of implantation may contribute to endometrial infertility. OBJECTIVE The aim was to assess the expression of MUC1 in the endometrium from polycystic ovary syndrome (PCOS), endometriosis, and fertile women in comparison with other hormone-regulated proteins [hydroxysteroid dehydrogenase (HSD) 1, HSD2, estrogen receptor (ER) and progesterone receptor (PR)]. DESIGN AND PATIENTS Endometrial samples were obtained from 33 fertile patients, 26 ovulatory PCOS patients, 15 anovulatory PCOS patients, and 25 endometriosis patients. MAIN OUTCOME MEASURE Immunohistochemistry assessed the expression of MUC1 subunits ER, PR, HSD1, and HSD2 in endometrial epithelium. Endometrial MUC1 expression was quantified by immunoblots and RT-PCR. HSD1 and HSD2 expression was assayed by RT-PCR. RESULTS MUC1ND expression was significantly higher in ovulatory PCOS than in fertile and anovulatory PCOS patients, even after progesterone stimulation. MUC1ND and -CD expression was lower in anovulatory PCOS than in fertile patients. Only MUC1CD expression was lower in endometriosis patients. Endometrial ER expression was significantly higher in PCOS and endometriosis patients, whereas PR expression was significantly higher in PCOS than in fertile patients. The expression of HSD1 was significantly higher in anovulatory PCOS than in fertile patients. Expression of HSD2 was significantly higher in PCOS patients and lower in endometriosis patients. CONCLUSION Expression of MUC1 subunits in the infertile endometrium is significantly different from fertile and appears to be a component of altered gene expression that potentially contributes to endometrial insufficiency.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Deyarina Gonzalez; Nurul Hamidi; Ricardo Del Sol; Joris J. Benschop; Thomas Nancy; Chao Li; Lewis W. Francis; Manuel Tzouros; Jeroen Krijgsveld; Frank C. P. Holstege; R. Steven Conlan
Significance Mediator is a megadalton multisubunit molecular switchboard involved in gene regulation in eukaryotes and is structurally conserved between species. It bridges the general transcription machinery and function-specific DNA binding proteins. It plays a dynamic role in regulating a wide range of processes, involving, for example, thyroid and vitamin D receptors. The role of Mediator appears to be in the fine tuning of the activation and repression of gene expression in many organisms, yet the underlying mechanisms of how its own function is regulated remains to be unraveled. Here we demonstrate how Mediator autoregulates its own function by cross-talk between the tail module and the Cdk8 kinase module in an active process involving priming of the mediator component Med3 for ubiquitin-ligase (Grr1)–mediated degradation by Cdk8 phosphorylation. Mediator, an evolutionary conserved large multisubunit protein complex with a central role in regulating RNA polymerase II–transcribed genes, serves as a molecular switchboard at the interface between DNA binding transcription factors and the general transcription machinery. Mediator subunits include the Cdk8 module, which has both positive and negative effects on activator-dependent transcription through the activity of the cyclin-dependent kinase Cdk8, and the tail module, which is required for positive and negative regulation of transcription, correct preinitiation complex formation in basal and activated transcription, and Mediator recruitment. Currently, the molecular mechanisms governing Mediator function remain largely undefined. Here we demonstrate an autoregulatory mechanism used by Mediator to repress transcription through the activity of distinct components of different modules. We show that the function of the tail module component Med3, which is required for transcription activation, is suppressed by the kinase activity of the Cdk8 module. Med3 interacts with, and is phosphorylated by, Cdk8; site-specific phosphorylation triggers interaction with and degradation by the Grr1 ubiquitin ligase, thereby preventing transcription activation. This active repression mechanism involving Grr1-dependent ubiquitination of Med3 offers a rationale for the substoichiometric levels of the tail module that are found in purified Mediator and the corresponding increase in tail components seen in cdk8 mutants.
Biology of the Cell | 2009
Lewis W. Francis; Paul D. Lewis; Deyarina Gonzalez; Timothy A. Ryder; Gordon Webb; Lisa A. Joels; John O. White; Chris J. Wright; R. Steve Conlan
Background information. The endometrial epithelial cell membrane is a key interface in female reproductive biology. Steroid hormones play a predominant role in cyclic changes which occur at this interface during the female menstrual cycle. Specific changes in the morphology of the endometrial epithelial cell surface become apparent with the epithelial transition that drives the switch from a non‐receptive to receptive surface due to the action of progesterone on an oestrogen primed tissue. AFM (atomic force microscopy) allows the high‐resolution characterization of the endometrial epithelial cell surface. Its contact probe mechanism enables a unique imaging method that requires little sample preparation, yielding topographical and morphological characterization. By stiffening the cell membrane, low concentrations of fixatives allow the surface detail of the cell to be resolved while preserving fine ultra‐structural details for analysis.
Biochemical and Biophysical Research Communications | 2003
Deyarina Gonzalez; Beatriz Herrera; Amada Beltrán; Karel Otero; Gypsy Quintero; Armando Rojas
Vascular endothelial cadherin (VE-cadherin), which is localized at adherent junctions, is involved in the control of vascular permeability. A growing body of evidence indicates that NO modulates the movement of fluid and proteins out of the vasculature. In this paper, we investigated whether NO can disrupt the VE-cadherin complex. We found that treatment with two NO donors (SIN-1 and SNAP) markedly reduced the amount of VE-cadherin in a murine microvascular endothelial cell line (H5V) as demonstrated by immunoprecipitation analysis, cellular ELISA, and Northern blot analysis. Beta- and gamma-catenins were also found to be affected by the two NO donors. Moreover, the disruption of the complex, induced by NO donors, correlated with increases in vascular permeability using both in vivo and in vitro models. These results clearly demonstrate a role for NO in vascular permeability.
The Journal of Clinical Endocrinology and Metabolism | 2012
Deyarina Gonzalez; H. Thackeray; Paul D. Lewis; A. Mantani; N. Brook; K. Ahuja; R. Margara; L. Joels; John O. White; Robert Steve Conlan
CONTEXT In fertile patients the endometrial Wilms tumor suppressor gene (WT1) is expressed during the window of implantation. Polycystic ovary syndrome (PCOS) patients suffer from hyperandrogenemia and infertility and have elevated endometrial androgen receptor (AR) expression. WT1 is known to be down-regulated by AR. Therefore, the expression of WT1 and its targets may be altered in PCOS endometrium. OBJECTIVE The objective of the study was to assess the expression and regulation of WT1 and selected downstream targets in secretory endometrium from ovulatory PCOS (ovPCOS) and fertile women. DESIGN AND PATIENTS Endometrial samples were obtained from 25 ovPCOS and 25 fertile patients. MAIN OUTCOME MEASURE Endometrial expression of WT1 and selected downstream targets were assessed by immunohistochemistry and RT-PCR. The androgen effect on WT1 expression was determined in vitro by immunoblots and RT-PCR. The expression of WT1 and its targets was quantified in fertile and ovPCOS stromal cells in the presence of androgens by RT-PCR. Caspase-3/7 activity was measured to evaluate sensitivity to drug-induced apoptosis. RESULTS WT1 expression was down-regulated in secretory-phase ovPCOS endometrium. Stromal expression of Bcl-2 and p27 was higher, and epidermal growth factor receptor was lower in ovPCOS than in fertile patients. Endometrial stromal expression of WT1, Bcl-2, Bcl-2-associated X protein, and β-catenin was regulated by androgens. Apoptosis levels were reduced in ovPCOS samples and androgen-treated fertile samples. CONCLUSION WT1 expression is down-regulated in ovPCOS endometrium during the window of implantation. Androgens regulate the expression of WT1 and its targets during endometrial decidualization. The altered balance between WT1 and AR in the endometrium of PCOS patients may jeopardize the success of decidualization and endometrial receptivity.