Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deyou Qiu is active.

Publication


Featured researches published by Deyou Qiu.


BMC Genomics | 2011

An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis.

Qi Tang; Xiaojun Ma; Changming Mo; Iain W. Wilson; Cai Song; Huan Zhao; Yanfang Yang; Wei Fu; Deyou Qiu

BackgroundSiraitia grosvenorii (Luohanguo) is an herbaceous perennial plant native to southern China and most prevalent in Guilin city. Its fruit contains a sweet, fleshy, edible pulp that is widely used in traditional Chinese medicine. The major bioactive constituents in the fruit extract are the cucurbitane-type triterpene saponins known as mogrosides. Among them, mogroside V is nearly 300 times sweeter than sucrose. However, little is known about mogrosides biosynthesis in S. grosvenorii, especially the late steps of the pathway.ResultsIn this study, a cDNA library generated from of equal amount of RNA taken from S. grosvenorii fruit at 50 days after flowering (DAF) and 70 DAF were sequenced using Illumina/Solexa platform. More than 48,755,516 high-quality reads from a cDNA library were generated that was assembled into 43,891 unigenes. De novo assembly and gap-filling generated 43,891 unigenes with an average sequence length of 668 base pairs. A total of 26,308 (59.9%) unique sequences were annotated and 11,476 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. cDNA sequences for all of the known enzymes involved in mogrosides backbone synthesis were identified from our library. Additionally, a total of eighty-five cytochrome P450 (CYP450) and ninety UDP-glucosyltransferase (UDPG) unigenes were identified, some of which appear to encode enzymes responsible for the conversion of the mogroside backbone into the various mogrosides. Digital gene expression profile (DGE) analysis using Solexa sequencing was performed on three important stages of fruit development, and based on their expression pattern, seven CYP450 s and five UDPG s were selected as the candidates most likely to be involved in mogrosides biosynthesis.ConclusionA combination of RNA-seq and DGE analysis based on the next generation sequencing technology was shown to be a powerful method for identifying candidate genes encoding enzymes responsible for the biosynthesis of novel secondary metabolites in a non-model plant. Seven CYP450 s and five UDPG s were selected as potential candidates involved in mogrosides biosynthesis. The transcriptome data from this study provides an important resource for understanding the formation of major bioactive constituents in the fruit extract from S. grosvenorii.


Gene | 2009

High throughput sequencing technology reveals that the taxoid elicitor methyl jasmonate regulates microRNA expression in Chinese yew (Taxus chinensis)

Deyou Qiu; Xiaoping Pan; Iain W. Wilson; Fenglan Li; Min Liu; Wenjing Teng; Baohong Zhang

MicroRNAs (miRNAs) are important regulators of gene expression that are increasing being implicated in controlling plant development and its interaction with the environment. The advent of new high-throughput sequencing technologies has enabled both the discovery and quantification of miRNAs from a diverse range of species. In this study, we employed high throughput Illumina sequencing to identify miRNAs from Taxus chinensis (T. chinensis) cells to investigate the effect of the taxoid elicitor methyl jasmonate (MJ) on miRNA expression. In a dataset of approximately 6.6 million sequences, a total of 58 miRNAs, belonging to 25 families were identified. A majority of them are conserved between angiosperms and gymnosperms. However, two miRNAs (miR1310 and miR1314) appear gymnosperm-specific, with miR1314 likely to exist as a cluster. MJ treatment significantly affected the expression of specific miRNAs; 14 miRNAs from 7 different families (miR156, miR168, miR169, miR172, miR396, miR480 and mir1310) were down regulated whereas 3 miRNAs from 2 families (miR164 and miR390) were up regulated.


New Phytologist | 2008

Gene expression in Eucalyptus branch wood with marked variation in cellulose microfibril orientation and lacking G‐layers

Deyou Qiu; Iain W. Wilson; Siming Gan; Russell Washusen; G. F. Moran; Simon G. Southerton

In response to gravitational stresses, angiosperm trees form tension wood in the upper sides of branches and leaning stems in which cellulose content is higher, microfibrils are typically aligned closely with the fibre axis and the fibres often have a thick inner gelatinous cell wall layer (G-layer). Gene expression was studied in Eucalyptus nitens branches oriented at 45 degrees using microarrays containing 4900 xylem cDNAs, and wood fibre characteristics revealed by X-ray diffraction, chemical and histochemical methods. Xylem fibres in tension wood (upper branch) had a low microfibril angle, contained few fibres with G-layers and had higher cellulose and decreased Klason lignin compared with lower branch wood. Expression of two closely related fasciclin-like arabinogalactan proteins and a beta-tubulin was inversely correlated with microfibril angle in upper and lower xylem from branches. Structural and chemical modifications throughout the secondary cell walls of fibres sufficient to resist tension forces in branches can occur in the absence of G-layer enriched fibres and some important genes involved in responses to gravitational stress in eucalypt xylem are identified.


BMC Genomics | 2011

De novo assembly of Euphorbia fischeriana root transcriptome identifies prostratin pathway related genes.

Roberto A. Barrero; Brett Chapman; Yanfang Yang; P. Moolhuijzen; Gabriel Keeble-Gagnère; Nan Zhang; Qi Tang; M. Bellgard; Deyou Qiu

BackgroundEuphorbia fischeriana is an important medicinal plant found in Northeast China. The plant roots contain many medicinal compounds including 12-deoxyphorbol-13-acetate, commonly known as prostratin that is a phorbol ester from the tigliane diterpene series. Prostratin is a protein kinase C activator and is effective in the treatment of Human Immunodeficiency Virus (HIV) by acting as a latent HIV activator. Latent HIV is currently the biggest limitation for viral eradication. The aim of this study was to sequence, assemble and annotate the E. fischeriana transcriptome to better understand the potential biochemical pathways leading to the synthesis of prostratin and other related diterpene compounds.ResultsIn this study we conducted a high throughput RNA-seq approach to sequence the root transcriptome of E. fischeriana. We assembled 18,180 transcripts, of these the majority encoded protein-coding genes and only 17 transcripts corresponded to known RNA genes. Interestingly, we identified 5,956 protein-coding transcripts with high similarity (> = 75%) to Ricinus communis, a close relative to E. fischeriana. We also evaluated the conservation of E. fischeriana genes against EST datasets from the Euphorbeacea family, which included R. communis, Hevea brasiliensis and Euphorbia esula. We identified a core set of 1,145 gene clusters conserved in all four species and 1,487 E. fischeriana paralogous genes. Furthermore, we screened E. fischeriana transcripts against an in-house reference database for genes implicated in the biosynthesis of upstream precursors to prostratin. This identified 24 and 9 candidate transcripts involved in the terpenoid and diterpenoid biosyntehsis pathways, respectively. The majority of the candidate genes in these pathways presented relatively low expression levels except for 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase (HDS) and isopentenyl diphosphate/dimethylallyl diphosphate synthase (IDS), which are required for multiple downstream pathways including synthesis of casbene, a proposed precursor to prostratin.ConclusionThe resources generated in this study provide new insights into the upstream pathways to the synthesis of prostratin and will likely facilitate functional studies aiming to produce larger quantities of this compound for HIV research and/or treatment of patients.


BMC Genomics | 2014

Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431

Yanfang Yang; Hainan Zhao; Roberto A. Barrero; Baohong Zhang; Guiling Sun; Iain W. Wilson; Fuliang Xie; Kevin D. Walker; Joshua W Parks; Robert Bruce; Guangwu Guo; Li Chen; Yong Zhang; Xin Huang; Qi Tang; Hongwei Liu; M. Bellgard; Deyou Qiu; Jinsheng Lai; Angela Hoffman

BackgroundPaclitaxel (Taxol™) is an important anticancer drug with a unique mode of action. The biosynthesis of paclitaxel had been considered restricted to the Taxus species until it was discovered in Taxomyces andreanae, an endophytic fungus of T. brevifolia. Subsequently, paclitaxel was found in hazel (Corylus avellana L.) and in several other endophytic fungi. The distribution of paclitaxel in plants and endophytic fungi and the reported sequence homology of key genes in paclitaxel biosynthesis between plant and fungi species raises the question about whether the origin of this pathway in these two physically associated groups could have been facilitated by horizontal gene transfer.ResultsThe ability of the endophytic fungus of hazel Penicillium aurantiogriseum NRRL 62431 to independently synthesize paclitaxel was established by liquid chromatography-mass spectrometry and proton nuclear magnetic resonance. The genome of Penicillium aurantiogriseum NRRL 62431 was sequenced and gene candidates that may be involved in paclitaxel biosynthesis were identified by comparison with the 13 known paclitaxel biosynthetic genes in Taxus. We found that paclitaxel biosynthetic gene candidates in P. aurantiogriseum NRRL 62431 have evolved independently and that horizontal gene transfer between this endophytic fungus and its plant host is unlikely.ConclusionsOur findings shed new light on how paclitaxel-producing endophytic fungi synthesize paclitaxel, and will facilitate metabolic engineering for the industrial production of paclitaxel from fungi.


PLOS ONE | 2013

Deep Sequencing Reveals Transcriptome Re-Programming of Taxus × media Cells to the Elicitation with Methyl Jasmonate

Guiling Sun; Yanfang Yang; Fuliang Xie; Jian-Fan Wen; Jianqiang Wu; Iain W. Wilson; Qi Tang; Hongwei Liu; Deyou Qiu

Background Plant cell culture represents an alternative source for producing high-value secondary metabolites including paclitaxel (Taxol®), which is mainly produced in Taxus and has been widely used in cancer chemotherapy. The phytohormone methyl jasmonate (MeJA) can significantly increase the production of paclitaxel, which is induced in plants as a secondary metabolite possibly in defense against herbivores and pathogens. In cell culture, MeJA also elicits the accumulation of paclitaxel; however, the mechanism is still largely unknown. Methodology/Principal Findings To obtain insight into the global regulation mechanism of MeJA in the steady state of paclitaxel production (7 days after MeJA addition), especially on paclitaxel biosynthesis, we sequenced the transcriptomes of MeJA-treated and untreated Taxus × media cells and obtained ∼ 32.5 M high quality reads, from which 40,348 unique sequences were obtained by de novo assembly. Expression level analysis indicated that a large number of genes were associated with transcriptional regulation, DNA and histone modification, and MeJA signaling network. All the 29 known genes involved in the biosynthesis of terpenoid backbone and paclitaxel were found with 18 genes showing increased transcript abundance following elicitation of MeJA. The significantly up-regulated changes of 9 genes in paclitaxel biosynthesis were validated by qRT-PCR assays. According to the expression changes and the previously proposed enzyme functions, multiple candidates for the unknown steps in paclitaxel biosynthesis were identified. We also found some genes putatively involved in the transport and degradation of paclitaxel. Potential target prediction of miRNAs indicated that miRNAs may play an important role in the gene expression regulation following the elicitation of MeJA. Conclusions/Significance Our results shed new light on the global regulation mechanism by which MeJA regulates the physiology of Taxus cells and is helpful to understand how MeJA elicits other plant species besides Taxus.


BMC Genomics | 2014

De novo transcriptome sequencing and digital gene expression analysis predict biosynthetic pathway of rhynchophylline and isorhynchophylline from Uncaria rhynchophylla, a non-model plant with potent anti-alzheimer's properties

Qianqian Guo; Xiaojun Ma; Shugen Wei; Deyou Qiu; Iain W. Wilson; Peng Wu; Qi Tang; Lijun Liu; Shoukun Dong; Wei Zu

BackgroundThe major medicinal alkaloids isolated from Uncaria rhynchophylla (gouteng in chinese) capsules are rhynchophylline (RIN) and isorhynchophylline (IRN). Extracts containing these terpene indole alkaloids (TIAs) can inhibit the formation and destabilize preformed fibrils of amyloid β protein (a pathological marker of Alzheimer’s disease), and have been shown to improve the cognitive function of mice with Alzheimer-like symptoms. The biosynthetic pathways of RIN and IRN are largely unknown.ResultsIn this study, RNA-sequencing of pooled Uncaria capsules RNA samples taken at three developmental stages that accumulate different amount of RIN and IRN was performed. More than 50 million high-quality reads from a cDNA library were generated and de novo assembled. Sequences for all of the known enzymes involved in TIAs synthesis were identified. Additionally, 193 cytochrome P450 (CYP450), 280 methyltransferase and 144 isomerase genes were identified, that are potential candidates for enzymes involved in RIN and IRN synthesis. Digital gene expression profile (DGE) analysis was performed on the three capsule developmental stages, and based on genes possessing expression profiles consistent with RIN and IRN levels; four CYP450s, three methyltransferases and three isomerases were identified as the candidates most likely to be involved in the later steps of RIN and IRN biosynthesis.ConclusionA combination of de novo transcriptome assembly and DGE analysis was shown to be a powerful method for identifying genes encoding enzymes potentially involved in the biosynthesis of important secondary metabolites in a non-model plant. The transcriptome data from this study provides an important resource for understanding the formation of major bioactive constituents in the capsule extract from Uncaria, and provides information that may aid in metabolic engineering to increase yields of these important alkaloids.


BMC Genomics | 2015

Identification of novel and conserved microRNAs in Panax notoginseng roots by high-throughput sequencing

Rongchang Wei; Deyou Qiu; Iain W. Wilson; Huan Zhao; Shanfa Lu; Jianhua Miao; Shixin Feng; Longhua Bai; Qinghua Wu; Dongping Tu; Xiaojun Ma; Qi Tang

BackgroundMicroRNAs (miRNAs) are small, non-coding RNAs that are important regulators of gene expression, and play major roles in plant development and their response to the environment. Root extracts from Panax notoginseng contain triterpene saponins as their principal bioactive constituent, and demonstrate medicinal properties. To investigate the novel and conserved miRNAs in P. notoginseng, three small RNA libraries constructed from 1-, 2-, and 3-year-old roots in which root saponin levels vary underwent high-throughput sequencing.MethodsP. notoginseng roots, purified from 1-, 2-, and 3-year-old roots, were extracted for RNA, respectively. Three small libraries were constructed and subjected to next generation sequencing.ResultsSequencing of the three libraries generated 67,217,124 clean reads from P. notoginseng roots. A total of 316 conserved miRNAs (belonging to 67 miRNA families and one unclassified family) and 52 novel miRNAs were identified. MIR156 and MIR166 were the largest miRNA families, while miR156i and miR156g showed the highest abundance of miRNA species. Potential miRNA target genes were predicted and annotated using Cluster of Orthologous Groups, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes. Comparing these miRNAs between root samples revealed 33 that were differentially expressed between 2- and 1-year-old roots (8 increased, 25 decreased), 27 differentially expressed between 3- and 1-year-old roots (7 increased, 20 decreased), and 29 differentially expressed between 3- and 2-year-old roots (8 increased, 21 decreased). Two significantly differentially expressed miRNAs and four miRNAs predicted to target genes involved in the terpenoid backbone biosynthesis pathway were selected and validated by quantitative reverse transcription PCR. Furthermore, the expression patterns of these six miRNAs were analyzed in P. notoginseng roots, stems, and leaves at different developmental stages.ConclusionsThis study identified a large number of P. notoginseng miRNAs and their target genes, functional annotations, and gene expression patterns. It provides the first known miRNA profiles of the P. notoginseng root development cycle.


African Journal of Biotechnology | 2011

Antisense-induced suppression of taxoid 14 β- hydroxylase gene expression in transgenic Taxus × media cells

Fenglan Li; Xiaojun Ma; Xinling Hu; Angela Hoffman; Jungui Dai; Deyou Qiu

The enzyme taxoid 14β-hydroxylase (14OH) directs a side-route of taxol pathway to 14β-hydroxy taxoids. Suppression of this side-route could increase the production of taxol. To suppress taxoid 14β- hydroxylase gene (14OH) expression in the Taxus × media TM3 cell line, antisense RNA inhibition approach was used in this study. Following the construction of an antisense RNA expression vector of 14OH from Taxus chinensis , the antisense 14OH cDNA (as14OH) was introduced into TM3 cells by Agrobacterium tumefaciens -mediated transformation. Southern blot analysis of hygromycin phosphotransferase gene (HYG) revealed that this selection gene was integrated successfully into the genome of Taxus × media cells. Reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that the 14OH mRNA level in transgenic cells dropped dramatically, suggesting that the expression of endogenous14OH gene was significantly suppressed by the exogenous as14OH gene. Correspondingly, the total yield of three major C-14 oxygenated taxoids (yunnanxane, taxuyunnanine C, sinenxan C) was markedly reduced in the silenced cell lines when compared with those of the nontransgenic controls. These results indicated that the antisense RNA strategy is a useful tool in suppressing the expression of genes in Taxus and this method could be used to silence other important genes that divert Taxol pathway to side-route metabolites. Key words: Taxus × media, taxoid 14β-hydroxylase, antisense, gene suppression.


PLOS ONE | 2016

Genome-Wide Identification and Analysis of MicroRNAs Involved in Witches’-Broom Phytoplasma Response in Ziziphus jujuba

Fenjuan Shao; Qian Zhang; Hongwei Liu; Shanfa Lu; Deyou Qiu

MicroRNAs (miRNAs) play an important role in responding to biotic and abiotic stresses in plants. Jujube witches’-broom a phytoplasma disease of Ziziphus jujuba is prevalent in China and is a serious problem to the industry. However, the molecular mechanism of the disease is poorly understood. In this study, genome-wide identification and analysis of microRNAs in response to witches’-broom was performed. A total of 85 conserved miRNA unique sequences belonging to 32 miRNA families and 24 novel miRNA unique sequences, including their complementary miRNA* strands were identified from small RNA libraries derived from a uninfected and witches’-broom infected Z. jujuba plant. Differentially expressed miRNAs associated with Jujube witches’-broom disease were investigated between the two libraries, and 12 up-regulated miRNAs and 10 down- regulated miRNAs identified with more than 2 fold changes. Additionally, 40 target genes of 85 conserved miRNAs and 49 target genes of 24 novel miRNAs were predicted and their putative functions assigned. Using the modified 5’-RACE method, we confirmed that SPL and MYB were cleaved by miR156 and miR159, respectively. Our results provide insight into the molecular mechanisms of witches’-broom disease in Z. jujuba.

Collaboration


Dive into the Deyou Qiu's collaboration.

Top Co-Authors

Avatar

Iain W. Wilson

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Qi Tang

Hunan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Guiling Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaojun Ma

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fuliang Xie

East Carolina University

View shared research outputs
Top Co-Authors

Avatar

Jianqiang Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shanfa Lu

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Baohong Zhang

East Carolina University

View shared research outputs
Researchain Logo
Decentralizing Knowledge