Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deyu Fang is active.

Publication


Featured researches published by Deyu Fang.


Diabetes | 2011

Therapeutic Potential of Nrf2 Activators in Streptozotocin-Induced Diabetic Nephropathy

Hongting Zheng; Samantha A. Whitman; Wei Wu; Georg T. Wondrak; Pak Kin Wong; Deyu Fang; Donna D. Zhang

OBJECTIVE To determine whether dietary compounds targeting NFE2-related factor 2 (Nrf2) activation can be used to attenuate renal damage and preserve renal function during the course of streptozotocin (STZ)-induced diabetic nephropathy. RESEARCH DESIGN AND METHODS Diabetes was induced in Nrf2+/+ and Nrf2−/− mice by STZ injection. Sulforaphane (SF) or cinnamic aldehyde (CA) was administered 2 weeks after STZ injection and metabolic indices and renal structure and function were assessed (18 weeks). Markers of diabetes including blood glucose, insulin, polydipsia, polyuria, and weight loss were measured. Pathological alterations and oxidative damage in glomeruli were also determined. Changes in protein expression of the Nrf2 pathway, as well as transforming growth factor-β1 (TGF-β1), fibronectin (FN), collagen IV, and p21/WAF1Cip1 (p21) were analyzed. The molecular mechanisms of Nrf2-mediated protection were investigated in an in vitro model using human renal mesangial cells (HRMCs). RESULTS SF or CA significantly attenuated common metabolic disorder symptoms associated with diabetes in Nrf2+/+ but not in Nrf2−/− mice, indicating SF and CA function through specific activation of the Nrf2 pathway. Furthermore, SF or CA improved renal performance and minimized pathological alterations in the glomerulus of STZ-Nrf2+/+ mice. Nrf2 activation reduced oxidative damage and suppressed the expression of TGF-β1, extracellular matrix proteins and p21 both in vivo and in HRMCs. In addition, Nrf2 activation reverted p21-mediated growth inhibition and hypertrophy of HRMCs under hyperglycemic conditions. CONCLUSIONS We provide experimental evidence indicating that dietary compounds targeting Nrf2 activation can be used therapeutically to improve metabolic disorder and relieve renal damage induced by diabetes.


Diabetes | 2010

The Protective Role of Nrf2 in Streptozotocin-Induced Diabetic Nephropathy

Tao Jiang; Zheping Huang; Yifeng Lin; Zhigang Zhang; Deyu Fang; Donna D. Zhang

OBJECTIVE Diabetic nephropathy is one of the major causes of renal failure, which is accompanied by the production of reactive oxygen species (ROS). Nrf2 is the primary transcription factor that controls the antioxidant response essential for maintaining cellular redox homeostasis. Here, we report our findings demonstrating a protective role of Nrf2 against diabetic nephropathy. RESEARCH DESIGN AND METHODS We explore the protective role of Nrf2 against diabetic nephropathy using human kidney biopsy tissues from diabetic nephropathy patients, a streptozotocin-induced diabetic nephropathy model in Nrf2−/− mice, and cultured human mesangial cells. RESULTS The glomeruli of human diabetic nephropathy patients were under oxidative stress and had elevated Nrf2 levels. In the animal study, Nrf2 was demonstrated to be crucial in ameliorating streptozotocin-induced renal damage. This is evident by Nrf2−/− mice having higher ROS production and suffering from greater oxidative DNA damage and renal injury compared with Nrf2+/+ mice. Mechanistic studies in both in vivo and in vitro systems showed that the Nrf2-mediated protection against diabetic nephropathy is, at least, partially through inhibition of transforming growth factor-β1 (TGF-β1) and reduction of extracellular matrix production. In human renal mesangial cells, high glucose induced ROS production and activated expression of Nrf2 and its downstream genes. Furthermore, activation or overexpression of Nrf2 inhibited the promoter activity of TGF-β1 in a dose-dependent manner, whereas knockdown of Nrf2 by siRNA enhanced TGF-β1 transcription and fibronectin production. CONCLUSIONS This work clearly indicates a protective role of Nrf2 in diabetic nephropathy, suggesting that dietary or therapeutic activation of Nrf2 could be used as a strategy to prevent or slow down the progression of diabetic nephropathy.


Journal of Clinical Investigation | 2009

The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice.

Jinping Zhang; Sang Myeong Lee; Stephen Shannon; Beixue Gao; Weimin Chen; An Chen; Rohit D. Divekar; Michael W. McBurney; Helen Braley-Mullen; Habib Zaghouani; Deyu Fang

Although many self-reactive T cells are eliminated by negative selection in the thymus, some of these cells escape into the periphery, where they must be controlled by additional mechanisms. However, the molecular mechanisms underlying peripheral T cell tolerance and its maintenance remain largely undefined. In this study, we report that sirtuin 1 (Sirt1), a type III histone deacetylase, negatively regulates T cell activation and plays a major role in clonal T cell anergy in mice. In vivo, we found that loss of Sirt1 function resulted in abnormally increased T cell activation and a breakdown of CD4+ T cell tolerance. Conversely, upregulation of Sirt1 expression led to T cell anergy, in which the activity of the transcription factor AP-1 was substantially diminished.Furthermore, Sirt1 interacted with and deacetylated c-Jun, yielding an inactive AP-1 factor. In addition, Sirt1-deficient mice were unable to maintain T cell tolerance and developed severe experimental allergic encephalomyelitis as well as spontaneous autoimmunity. These findings provide insight into the molecular mechanisms of T cell activation and anergy, and we suggest that activators of Sirt1 may be useful as therapeutic agents for the treatment and/or prevention of autoimmune diseases.


Molecular Cell | 2012

USP22 Antagonizes p53 Transcriptional Activation by Deubiquitinating Sirt1 to Suppress Cell Apoptosis and Is Required for Mouse Embryonic Development

Zhenghong Lin; Heeyoung Yang; Qingfei Kong; Jinping Li; Sang Myeong Lee; Beixue Gao; Hongxin Dong; Jian Jun Wei; Jianxun Song; Donna D. Zhang; Deyu Fang

The NAD-dependent histone deacetylase Sirt1 antagonizes p53 transcriptional activity to regulate cell-cycle progression and apoptosis. We have identified a ubiquitin-specific peptidase, USP22, one of the 11 death-from-cancer signature genes that are critical in controlling cell growth and death, as a positive regulator of Sirt1. USP22 interacts with and stabilizes Sirt1 by removing polyubiquitin chains conjugated onto Sirt1. The USP22-mediated stabilization of Sirt1 leads to decreasing levels of p53 acetylation and suppression of p53-mediated functions. In contrast, depletion of endogenous USP22 by RNA interference destabilizes Sirt1, inhibits Sirt1-mediated deacetylation of p53 and elevates p53-dependent apoptosis. Genetic deletion of the usp22 gene results in Sirt1 instability, elevated p53 transcriptional activity and early embryonic lethality in mice. Our study elucidates a molecular mechanism in suppression of cell apoptosis by stabilizing Sirt1 in response to DNA damage and reveals a critical physiological function of USP22 in mouse embryonic development.


Genes & Development | 2014

Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis

Tongde Wu; Fei Zhao; Beixue Gao; Can Tan; Naoko Yagishita; Toshihiro Nakajima; Pak Kin Wong; Eli Chapman; Deyu Fang; Donna D. Zhang

Increased endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) are the salient features of end-stage liver diseases. Using liver tissues from liver cirrhosis patients, we observed up-regulation of the XBP1-Hrd1 arm of the ER stress response pathway and down-regulation of the Nrf2-mediated antioxidant response pathway. We further confirmed this negative regulation of Nrf2 by Hrd1 using Hrd1 conditional knockout mice. Down-regulation of Nrf2 was a surprising result, since the high levels of ROS should have inactivated Keap1, the primary ubiquitin ligase regulating Nrf2 levels. Here, we identified Hrd1 as a novel E3 ubiquitin ligase responsible for compromised Nrf2 response during liver cirrhosis. In cirrhotic livers, activation of the XBP1-Hrd1 arm of ER stress transcriptionally up-regulated Hrd1, resulting in enhanced Nrf2 ubiquitylation and degradation and attenuation of the Nrf2 signaling pathway. Our study reveals not only the convergence of ER and oxidative stress response pathways but also the pathological importance of this cross-talk in liver cirrhosis. Finally, we showed the therapeutic importance of targeting Hrd1, rather than Keap1, to prevent Nrf2 loss and suppress liver cirrhosis.


Genes & Development | 2013

The structural basis of R-spondin recognition by LGR5 and RNF43

Po Han Chen; Xiaoyan Chen; Zhenghong Lin; Deyu Fang; Xiaolin He

R-spondins (RSPOs) enhance Wnt signaling, affect stem cell behavior, bind to leucine-rich repeat-containing G-protein-coupled receptors 4-6, (LGR4-6) and the transmembrane E3 ubiquitin ligases RING finger 43/zinc and RING finger 3 (RNF43/ZNRF3). The structure of RSPO1 bound to both LGR5 and RNF43 ectodomains confirms their physical linkage. RSPO1 is sandwiched by LGR5 and RNF43, with its rod module of the cysteine-rich domain (CRD) contacting LGR5 and a hairpin inserted into RNF43. LGR5 does not contact RNF43 but increases the affinity of RSPO1 to RNF43, supporting LGR5 as an engagement receptor and RNF43 as an effector receptor. Disease mutations map to the RSPO1-RNF43 interface, which promises therapeutic targeting.


Diabetologia | 2011

Prevention and treatment of diabetes with resveratrol in a non-obese mouse model of type 1 diabetes

Sang Myeong Lee; H. Yang; D. M. Tartar; Beixue Gao; Xunrong Luo; S. Q. Ye; Habib Zaghouani; Deyu Fang

Aims/hypothesisWe recently found that activation of the type III histone deacetylase sirtuin 1 suppresses T cell immune responses. Here we sought to determine the therapeutic potential of the sirtuin 1 activator resveratrol in the treatment of diabetes in the NOD mouse model of type 1 diabetes and the mechanisms underlying such potential.MethodsNOD mice were fed or subcutaneously injected with resveratrol and evaluated for development of diabetes. Splenocytes from resveratrol-treated and control mice were analysed by gene array. The altered expression of inflammatory genes induced by resveratrol was validated and the role of changed gene expression in prevention of diabetes was determined.ResultsResveratrol administration potently prevented and treated type 1 diabetes in NOD mice. Gene array analysis indicated a dramatic decrease in expression of Ccr6, which encodes chemokine (C-C motif) receptor (CCR) 6, in the splenocytes from resveratrol-treated mice. CCR6 abundance on IL-17-producing cells and CD11b+F4/80hi macrophages was inhibited by resveratrol treatment. Interestingly, CCR6+ IL-17-producing cells and CD11b+F4/80hi macrophages accumulated in the spleens and pancreatic lymph nodes, but their presence in the pancreas was reduced, suggesting that resveratrol blocks their migration from peripheral lymphoid organs to the pancreas. Indeed, the migration of splenocytes toward media containing chemokine (C-C motif) ligand 20 (CCL20) was impaired by resveratrol treatment. CCL20 peptides, which block CCR6 binding to CCL20, inhibited development of type 1 diabetes.Conclusions/interpretationInhibition of CCR6-mediated migration of inflammatory cells by resveratrol may provide a powerful approach for treatment of type 1 diabetes and possibly of other inflammatory diseases.


The EMBO Journal | 2013

Toll‐like receptor‐mediated IRE1α activation as a therapeutic target for inflammatory arthritis

Quan Qiu; Ze Zheng; Lin Chang; Yuan Si Zhao; Can Tan; Aditya Dandekar; Zheng Zhang; Zhenghong Lin; Ming Gui; Xiu Li; Tongshuai Zhang; Qingfei Kong; Hulun Li; Sha Chen; An Chen; Randal J. Kaufman; Wei Lei Yang; Hui Kuan Lin; Donna D. Zhang; Harris Perlman; Edward B. Thorp; Kezhong Zhang; Deyu Fang

In rheumatoid arthritis (RA), macrophage is one of the major sources of inflammatory mediators. Macrophages produce inflammatory cytokines through toll‐like receptor (TLR)‐mediated signalling during RA. Herein, we studied macrophages from the synovial fluid of RA patients and observed a significant increase in activation of inositol‐requiring enzyme 1α (IRE1α), a primary unfolded protein response (UPR) transducer. Myeloid‐specific deletion of the IRE1α gene protected mice from inflammatory arthritis, and treatment with the IRE1α‐specific inhibitor 4U8C attenuated joint inflammation in mice. IRE1α was required for optimal production of pro‐inflammatory cytokines as evidenced by impaired TLR‐induced cytokine production in IRE1α‐null macrophages and neutrophils. Further analyses demonstrated that tumour necrosis factor (TNF) receptor‐associated factor 6 (TRAF6) plays a key role in TLR‐mediated IRE1α activation by catalysing IRE1α ubiquitination and blocking the recruitment of protein phosphatase 2A (PP2A), a phosphatase that inhibits IRE1α phosphorylation. In summary, we discovered a novel regulatory axis through TRAF6‐mediated IRE1α ubiquitination in regulating TLR‐induced IRE1α activation in pro‐inflammatory cytokine production, and demonstrated that IRE1α is a potential therapeutic target for inflammatory arthritis.


Journal of Biological Chemistry | 2011

The Type III Histone Deacetylase Sirt1 Protein Suppresses p300-mediated Histone H3 Lysine 56 Acetylation at Bclaf1 Promoter to Inhibit T Cell Activation

Sinyi Kong; Seung Jae Kim; Barry Sandal; Sang Myeong Lee; Beixue Gao; Donna D. Zhang; Deyu Fang

The NAD-dependent histone deacetylase Sirt1 is a negative regulator of T cell activation. Here we report that Sirt1 inhibits T cell activation by suppressing the transcription of Bcl2-associated factor 1 (Bclaf1), a protein required for T cell activation. Sirt1-null T cells have increased acetylation of the histone 3 lysine 56 residue (H3K56) at the bclaf1 promoter, as well as increasing Bclaf1 transcription. Sirt1 binds to bclaf1 promoter upon T cell receptor (TCR)/CD28 stimulation by forming a complex with histone acetyltransferase p300 and NF-κB transcription factor Rel-A. The recruitment of Sirt1, but not p300, requires Rel-A because blocking Rel-A nuclear translocation in T cells and siRNA-mediated knockdown of Rel-A can inhibit Sirt1 binding to bclaf1 promoter. Although knockdown of either p300 or GCN5 partially suppressed global H3K56 acetylation, only p300 knockdown specifically attenuated H3K56 acetylation at the bclaf1 promoter. Lastly, knockdown of Bclaf1 suppresses the hyperactivation observed in Sirt1−/− T cells, indicated by less IL-2 production in CD4+ T cells and reduced proliferation. Therefore, Sirt1 negatively regulates T cell activation via H3K56 deacetylation at the promoter region to inhibit transcription of Bclaf1.


Cell Reports | 2013

USP10 Antagonizes c-Myc Transcriptional Activation through SIRT6 Stabilization to Suppress Tumor Formation

Zhenghong Lin; Heeyoung Yang; Can Tan; Jinping Li; Zhaojian Liu; Qiu Quan; Sinyi Kong; Junsheng Ye; Beixue Gao; Deyu Fang

The reduced protein expression of SIRT6 tumor suppressor is involved in tumorigenesis. The molecular mechanisms underlying SIRT6 protein downregulation in human cancers remain unknown. Using a proteomic approach, we have identified the ubiquitin-specific peptidase USP10, another tumor suppressor, as one of the SIRT6-interacting proteins. USP10 suppresses SIRT6 ubiquitination to protect SIRT6 from proteasomal degradation. USP10 antagonizes the transcriptional activity of the c-Myc oncogene through SIRT6, as well as p53, to inhibit cell-cycle progression, cancer cell growth, and tumor formation. To support this conclusion, we detected significant reductions in both USP10 and SIRT6 protein expression in human colon cancers. Our study discovered crosstalk between two tumor-suppressive genes in regulating cell-cycle progression and proliferation and showed that dysregulated USP10 function promotes tumorigenesis through SIRT6 degradation.

Collaboration


Dive into the Deyu Fang's collaboration.

Top Co-Authors

Avatar

Beixue Gao

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianxun Song

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Sinyi Kong

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Zhang

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Quan Qiu

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Hongxin Dong

Northwestern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge