Dezider Pancza
Slovak Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dezider Pancza.
Canadian Journal of Physiology and Pharmacology | 2009
Maria Ondrejcakova; Tatiana Ravingerova; Jan Bakos; Dezider Pancza; Daniela Jezova
Among the cardiovascular pathologies, ischemic heart disease is a serious medical problem that can result in cardiac injury and (or) heart failure. The aim of the present study was to test the hypothesis that neuropeptide oxytocin induces cardioprotective effects on ischemia-reperfusion-induced myocardial damage. The functional parameters of isolated Langendorff-perfused rat hearts were recorded before and after global 25 min ischemia and subsequent reperfusion. The infarct size was determined by a computerized planimetric method. The results showed that oxytocin produced negative chronotropic effect even at low concentrations (90-125 nmol/L). Perfusion with oxytocin before ischemia resulted in significant reduction of the infarct size (p<0.01), which was about 66% smaller than that in the control group. To evaluate the functional mechanisms involved, further experiments were performed under conditions of constant heart rate. The lower dose of oxytocin (90 nmol/L), which was ineffective in spontaneously beating hearts, induced a significant decrease of contractility. Elimination of the negative chronotropic effect of oxytocin prevented its cardioprotective action. In conclusion, our results demonstrated an attenuation of the infarct size in oxytocin-treated hearts, indicating a cardioprotective effect of oxytocin. The data suggest that the negative chronotropic action of oxytocin participates in its protective effects on ischemia-reperfusion-induced myocardial injury.
Molecular and Cellular Biochemistry | 2000
Tanya Ravingerova; Radovan Stetka; Katarina Volkovova; Dezider Pancza; Andrej Dzurba; Attila Ziegelhöffer; Ján Styk
Diabetic hearts are suggested to exhibit either increased or lower sensitivity to ischemia. Detrimental effects of prolonged ischemia can be attenuated by preconditioning, however, relatively little is known about its effects in the diseased myocardium. This study was designed to test the susceptibility to ischemia-induced arrhythmias and the effect of preconditioning in the diabetic heart. Rats were made diabetic with streptozotocin (45 mg/kg, i.v.). After 1 week, isolated Langendorff-perfused hearts were subjected to 30 min occlusion of LAD coronary artery without or with preceding preconditioning induced by one cycle of 5 min ischemia and 10 min reperfusion. Glycogen and lactate contents were estimated in the preconditioned and non-preconditioned hearts before and after ischemia. Diabetic hearts were more resistant to ischemia-induced arrhythmias: incidence of ventricular tachycardia (VT) decreased to 42% and only transient ventricular fibrillation (VF) occurred in 17% of the hearts as compared to the non-diabetic controls (VT 100% and VF 70% including sustained VF 36%; p < 0.05). Preconditioning effectively suppressed the incidence and severity of arrhythmias (VT 33%, VF 0%) in the normal hearts. However, this intervention did not confer any additional protection in the diabetic hearts. Despite higher glycogen content in the diabetic myocardium and greater glycogenolysis during ischemia, production of lactate in these hearts was significantly lower than in the controls. Preconditioning caused a substantial decrease in the accumulation of lactate in the normal hearts, whereby in the diabetic hearts, this intervention did not cause any further reduction in the level of lactate. In conclusion, diabetic rat hearts exhibit lower susceptibility to ischemic injury and show no additional response to preconditioning. Reduced production of glycolytic metabolites during ischemia can account for the enhanced resistance of diabetic hearts to ischemia as well as for the lack of further protection by preconditioning.
Canadian Journal of Physiology and Pharmacology | 2009
Ravingerová T; Adriana Adameova; Tara Kelly; Efthymia AntonopoulouE. Antonopoulou; Dezider Pancza; Mária OndrejčákováM. Ondrejčáková; Vinoth Kumar Megraj Khandelwal; Slavka Carnicka; Antigone Lazou
Peroxisome proliferator-activated receptors (PPAR), which are key transcriptional regulators of lipid metabolism and energy production, have been suggested to play an important role in myocardial ischaemia-reperfusion (I/R) injury. Their role in cardioprotection, however, is not yet fully elucidated. Statins have shown beneficial effects on I/R damage beyond lipid lowering, and some of their cardioprotective cholesterol-independent effects may be related to the regulation of PPAR. To clarify this issue, we explored a potential link between a response to I/R and changes in cardiac PPARalpha protein and gene expression in simvastatin-treated normocholesterolaemic rats. After 5 days of treatment with simvastatin (10 mg/kg per day, p.o.), Langendorff-perfused hearts were subjected to 30 min regional ischaemia (occlusion of the left anterior descending coronary artery) or global ischaemia and 2 h reperfusion for the evaluation of the infarct size (triphenyltetrazolium chloride and planimetry; as percentage of risk area), ischaemic arrhythmias, and postischaemic contractile recovery. Baseline PPARalpha mRNA and protein levels were increased by 3-fold and 2-fold, respectively, in simvastatin-treated hearts compared with the untreated controls. Simvastatin-treated hearts exhibited smaller size of infarction (11.5% +/- 0.4% vs. 33.7% +/- 4% in controls; p < 0.01), improved postischaemic contractile recovery, and lower severity of arrhythmias during ischaemia and early reperfusion. Enhanced resistance to I/R injury was associated with preservation of mRNA and protein levels of PPARalpha in contrast to their marked downregulation in controls. In conclusion, statin-induced changes in the expression of PPARalpha may contribute to attenuation of myocardial I/R injury and thus suggest the involvement of cardioprotective mechanisms independent of inhibition of HMG-CoA reductase.
Canadian Journal of Physiology and Pharmacology | 2009
Jana Matejikova; Ravingerová T; Dezider Pancza; Slavka Carnicka; Frantisek Kolar
Opening of mitochondrial KATP channels (mitoKATP) has been reported to underlie protection against ischaemia-reperfusion injury induced by ischaemic preconditioning (I-PC); however, the molecular mechanisms of its antiarrhythmic effect have not been fully elucidated. We explored the involvement of phosphatidylinositol 3-kinase (PI3K)/Akt in the PC-like effect of mitoKATP opener diazoxide with particular regard to its role in protection against ischaemia-induced arrhythmias. Langendorff-perfused rat hearts were subjected to 30 min LAD occlusion with or without a prior 15 min of perfusion with diazoxide (50 micromol/L) given either alone (D-PC) or in combination with the PI3K/Akt inhibitor wortmannin (100 nmol/L). In an additional protocol, ischaemia was followed by 2 h reperfusion for infarct size (IS) determination (tetrazolium staining). The total number of premature ventricular complexes over the whole period of ischaemia, episodes of ventricular tachycardia and its duration were significantly lower in the D-PC group than in the non-preconditioned controls (158 +/- 20, 2 +/- 0.6 and 4.6 +/- 1.8 s vs. 551 +/- 61, 11 +/- 2 and 42 +/- 8 s, respectively; p < 0.05), concomitant with a 62% reduction in the size of infarction. Wortmannin modified neither arrhythmogenesis nor IS in the non-preconditioned hearts. Bracketing of diazoxide with wortmannin did not reverse the antiarrhythmic protection, whereas the IS-limiting effect was blunted. The results indicate that in contrast with the positive role of PI3K/Akt in protection against lethal myocardial injury, its activity is not involved in suppression of ischaemia-induced arrhythmias conferred by mitoKATP opening in the rat heart.
Diabetes Research and Clinical Practice | 1996
Ravingerová T; Ján Styk; Dezider Pancza; Tribulová N; Jana šeboková; Katarina Volkovova; Attila Ziegelhöffer; Jan Slezak
There is some evidence that diabetic hearts are more resistant to ischaemia/reperfusion injury due to alterations in Ca2+ handling. Our objective was to explore this hypothesis in the model of Ca2+ overloaded heart (calcium paradox, CaP). Diabetes was induced by streptozotocin (45 mg/kg, i.v.). Despite regular insulin treatment blood glucose was increased. After a diabetes duration of 9 weeks the heart/body weight ratio was higher than in age-matched controls, and the heart rate, the coronary flow (CF) and the rate of contraction and relaxation was reduced as assessed in Langendorff preparation. Depressed function was accompanied by a lower content of high energy phosphates and ultrastructural alterations, such as an increased number of glycogen granules, lipid droplets and changes in the walls of capillaries leading to the narrowing of their lumen. In controls, readmission of Ca2+ into Ca(2+)-depleted hearts resulted in extensive deterioration of heart function, development of contraction bands, ultrastructural damage and loss of ATP. Diabetic hearts, despite impaired performance before CaP, showed an improved recovery of heart function manifested by restoration of electrical and contractile activity, as well as CF after Ca2+ repletion. This corresponded to better maintenance of energy metabolism and preservation of ultrastructure. In conclusion, diabetic hearts exhibit greater resistance to Ca2+ overload. Depressed heart function may account for this protective effect: bradycardia facilitates saving ATP; lower CF results in a slower rate of Ca2+ washout from the heart during Ca2+ depletion thus causing less damage to the cell membrane and maintenance of its integrity.
Basic Research in Cardiology | 1991
Ravingerová T; Ján Styk; V. Trégerová; Dezider Pancza; Jan Slezak; Tribulová N; Attila Ziegelhöffer; M. Pissarek; Laszlo Szekeres
SummaryThe effect of 7-oxo PGI2 on function and metabolism of postischemic reperfused (30-min ischemia and 30-min reperfusion) rat hearts was studied with special regard to calcium overload as one of the main factors of the postischemic reperfusion damage to the heart. The drug (50 μg/kg i.p.) was applied 48 h prior to starting the experiments on isolated rat hearts (Langendorff preparation at 37 °C and constant perfusion pressure of 65 mm Hg). A late protective effect of 7-oxo PGI2 was manifested by an improved recovery of heart function during reperfusion and calcium overload, better preservation of myocardial ATP contents during ischemia and also after calcium overload, as well as by a normalization of the lactate content, otherwise extremely increased during ischemia. Electron microscopic data also supported the above results. The beneficial effect of pretreatment with PGI2 may be explained not only by its vasodilating action, but more by its membrane stabilizing effect with a consequently decreased sodium accumulation, potassium loss, as well as intracellular calcium overload.
Evidence-based Complementary and Alternative Medicine | 2011
Vinoth Kumar Megraj Khandelwal; R. Balaraman; Dezider Pancza; Ravingerová T
Hemidesmus indicus (L.) R. Br. (HI) and Hibiscus rosa-sinensis L. (HRS) are widely used traditional medicine. We investigated cardioprotective effects of these plants applied for 15 min at concentrations of 90, 180, and 360 μg/mL in Langendorff-perfused rat hearts prior to 25-min global ischemia/120-min reperfusion (I/R). Functional recovery (left ventricular developed pressure—LVDP, and rate of development of pressure), reperfusion arrhythmias, and infarct size (TTC staining) served as the endpoints. A transient increase in LVDP (32%–75%) occurred at all concentrations of HI, while coronary flow (CF) was significantly increased after HI 180 and 360. Only a moderate increase in LVDP (21% and 55%) and a tendency to increase CF was observed at HRS 180 and 360. HI and HRS at 180 and 360 significantly improved postischemic recovery of LVDP. Both the drugs dose-dependently reduced the numbers of ectopic beats and duration of ventricular tachycardia. The size of infarction was significantly decreased by HI 360, while HRS significantly reduced the infarct size at all concentrations in a dose-dependent manner. Thus, it can be concluded that HI might cause vasodilation, positive inotropic effect, and cardioprotection, while HRS might cause these effects at higher concentrations. However, further study is needed to elucidate the exact mechanism of their actions.
Nutrition Research | 2011
Monika Ivanová; Pavol Janega; Jana Matejikova; Petra Šimončíková; Dezider Pancza; Tanya Ravingerova; Miroslav Barancik
High-fat or high-carbohydrate food consumption contributes to changes in myocardial tolerance to ischemia. However, with respect to experimental models, most studies used diets with very high doses of cholesterol, saturated fatty acids, or fructose. In our study, we fed rats a high-fat diet based on lard in combination with administration of a sweet beverage (30% sucrose solution) (high-fat sucrose diet [HFS]). This diet was used to simulate the unhealthy dietary habit typical for developed countries. We hypothesized that the application of HFS diet for 48 days might initiate progression of pathologic changes in the heart associated with myocardial remodeling and activation of adaptive mechanisms. We investigated the influence of HFS diet on cardiac function and vulnerability to ischemia-reperfusion (I/R) injury in Langendorff-perfused rat hearts subjected to 30-minute global ischemia and 120-minute reperfusion as well as on Akt kinase and matrix metalloproteinases. We found lower food consumption in HFS group compared with controls, but a significant increase in visceral fat mass and concentrations of triacylglycerol, low-density lipoprotein, and very low-density lipoprotein cholesterol. Baseline heart functional parameters and their postischemic recovery were not affected by HFS diet. On the other hand, hearts of HFS group were more resistant to lethal I/R injury manifested by significantly smaller infarct size. In addition, there was lower content of collagen I and III in the left ventricle associated with Akt kinase activation and matrix metalloproteinase 9 up-regulation. In conclusion, feeding rats with HFS diet resulted in heart remodeling associated with activation of some adaptive mechanisms, which can contribute to modulation of myocardial resistance to I/R injury.
Canadian Journal of Physiology and Pharmacology | 2013
Veronika Ledvenyiova; Dezider Pancza; Jana Matejikova; Miroslav Ferko; Iveta Bernatova; Tanya Ravingerova
Sex and aging represent important factors that determine morbidity and mortality due to cardiovascular diseases in the human population. This study aimed to investigate the impact of aging on the response to ischemia-reperfusion in male and female rat hearts, and to explore a potential role of the PI3K-Akt pathway in the cardioprotective effects of ischemic preconditioning (IPC) in the myocardium of younger and older adult males and females. Langendorff-perfused nonpreconditioned and preconditioned hearts of 12- and 18-week-old male and female Wistar rats were subjected to regional ischemia and reperfusion with or without prior perfusion with the PI3K inhibitor wortmannin for the evaluation of ischemia-induced arrhythmias and the size of myocardial infarction (infarct size; IS). Aging did not modify IS in both sexes; however, it markedly increased susceptibility to arrhythmias. Although IPC effectively reduced IS in males and females of both ages, only the hearts of males and 18-week-old females benefited from its antiarrhythmic effect. In the preconditioned 12-week-old females, but not the 18-week-old females, and in males of both ages, wortmannin blunted the anti-infarct effect of IPC. In conclusion, activation of the PI3K-Akt pathway plays an important role in protection against lethal injury conferred by IPC in males irrespective of age. The IS-limiting effect of IPC appears to be PI3K-Akt-dependent only in the 12-week-old females.
Advances in Experimental Medicine and Biology | 2001
Tanya Ravingerova; Radovan Stetka; Miroslav Barancik; Katarina Volkovova; Dezider Pancza; Attila Ziegelhöffer; Ján Styk
Diabetic patients are more prone to develop congestive heart failure and/or ischemic heart disease. Myocardial dysfunction is often attributed to diabetic cardiomyopathy that has been described in various clinical and experimental settings1,2. Deteriorations of heart contractile function as well as rhythm disorders are caused by the alterations in the cell membranes ion transport systems responsible for the maintenance of the homeostasis of Na+, K+ and Ca2+ and abnormal Ca2+ -handling3,4,5,6