Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dhafer Laouini is active.

Publication


Featured researches published by Dhafer Laouini.


PLOS Neglected Tropical Diseases | 2013

MicroRNA Expression Profile in Human Macrophages in Response to Leishmania major Infection

Julien Lemaire; Ghada Mkannez; Fatma Z. Guerfali; Cindy Gustin; Hanène Attia; Rabiaa M. Sghaier; Sysco-Consortium; Koussay Dellagi; Dhafer Laouini; Patricia Renard

Background Leishmania (L.) are intracellular protozoan parasites able to survive and replicate in the hostile phagolysosomal environment of infected macrophages. They cause leishmaniasis, a heterogeneous group of worldwide-distributed affections, representing a paradigm of neglected diseases that are mainly embedded in impoverished populations. To establish successful infection and ensure their own survival, Leishmania have developed sophisticated strategies to subvert the host macrophage responses. Despite a wealth of gained crucial information, these strategies still remain poorly understood. MicroRNAs (miRNAs), an evolutionarily conserved class of endogenous 22-nucleotide non-coding RNAs, are described to participate in the regulation of almost every cellular process investigated so far. They regulate the expression of target genes both at the levels of mRNA stability and translation; changes in their expression have a profound effect on their target transcripts. Methodology/Principal Findings We report in this study a comprehensive analysis of miRNA expression profiles in L. major-infected human primary macrophages of three healthy donors assessed at different time-points post-infection (three to 24 h). We show that expression of 64 out of 365 analyzed miRNAs was consistently deregulated upon infection with the same trends in all donors. Among these, several are known to be induced by TLR-dependent responses. GO enrichment analysis of experimentally validated miRNA-targeted genes revealed that several pathways and molecular functions were disturbed upon parasite infection. Finally, following parasite infection, miR-210 abundance was enhanced in HIF-1α-dependent manner, though it did not contribute to inhibiting anti-apoptotic pathways through pro-apoptotic caspase-3 regulation. Conclusions/Significance Our data suggest that alteration in miRNA levels likely plays an important role in regulating macrophage functions following L. major infection. These results could contribute to better understanding of the dynamics of gene expression in host cells during leishmaniasis.


Natural Product Research | 2011

Evaluation of antileishmanial, cytotoxic and antioxidant activities of essential oils extracted from plants issued from the leishmaniasis-endemic region of Sned (Tunisia)

S. Ben Hadj Ahmed; R.M. Sghaier; Fatma Guesmi; Belhassen Kaabi; M. Mejri; H. Attia; Dhafer Laouini; I. Smaali

In this study, we tested 10 essential oils (EOs) extracted from 10 plants issued from Sned region (Tunisia) to evaluate both their leishmanicidal effects against Leishmania major and L. infantum, and their cytotoxicity against murine macrophage cell line RAW 264.7 (ATCC, TIB-71). The antioxidant activity was also monitored by the DDPH method, while the chemical composition of active EO was assessed by GC–MS analysis. The results showed that the EOs obtained from Thymus hirtus sp. algeriensis (rich on monoterpenoids, especially linalool at 17.62% and camphor at 13.82%) is significantly active against both L. major and L. infantum, whereas Ruta chalepensis EO (rich on 2-undecanone at 84.28%) is only active against L. infantum. Both oil extracts showed low cytotoxicity towards murine macrophages. The characteristic ratios (IC80 Raw264.7 cells/IC50 L. infantum and IC80 Raw264.7 cells/IC50 L. major) were, respectively, 2.7 and 1.57 for T. hirtus sp. algeriensis, and 1.34 and 0.19 for R. chalepensis. However, when measuring the antioxidant effects (DDPH method), the two latter EOs presented a moderate 2,2-diphenyl-2-picrylhydrazyl hydrate scavenging effects compared to EOs from Eucaliptus globulus, Pinus halepensis, Pituranthos tortuosus, Rosmarinus officinalis, Tetraclinis articulata or to BHT.


Infection, Genetics and Evolution | 2009

Application of Multi-SOM clustering approach to macrophage gene expression analysis

Amel Ghouila; Sadok Ben Yahia; Dhafer Malouche; Haifa Jmel; Dhafer Laouini; Fatma Z. Guerfali; Sonia Abdelhak

The production of increasingly reliable and accessible gene expression data has stimulated the development of computational tools to interpret such data and to organize them efficiently. The clustering techniques are largely recognized as useful exploratory tools for gene expression data analysis. Genes that show similar expression patterns over a wide range of experimental conditions can be clustered together. This relies on the hypothesis that genes that belong to the same cluster are coregulated and involved in related functions. Nevertheless, clustering algorithms still show limits, particularly for the estimation of the number of clusters and the interpretation of hierarchical dendrogram, which may significantly influence the outputs of the analysis process. We propose here a multi level SOM based clustering algorithm named Multi-SOM. Through the use of clustering validity indices, Multi-SOM overcomes the problem of the estimation of clusters number. To test the validity of the proposed clustering algorithm, we first tested it on supervised training data sets. Results were evaluated by computing the number of misclassified samples. We have then used Multi-SOM for the analysis of macrophage gene expression data generated in vitro from the same individual blood infected with 5 different pathogens. This analysis led to the identification of sets of tightly coregulated genes across different pathogens. Gene Ontology tools were then used to estimate the biological significance of the clustering, which showed that the obtained clusters are coherent and biologically significant.


Infection, Genetics and Evolution | 2009

An in silico immunological approach for prediction of CD8+ T cell epitopes of Leishmania major proteins in susceptible BALB/c and resistant C57BL/6 murine models of infection

Fatma Z. Guerfali; H. Ben-Abdallah; Rabiaa M. Sghaier; K. Ben-Aissa; Ghada Mkannez; Hanène Attia; Dhafer Laouini

It is well established that MHC class II restricted-CD4 T cells are dominant during the development of immunity against Leishmania (L) in the C57BL/6-resistant mouse strain. However and in agreement with a number of previous observations indicating that specific CD8 T cells are primed during natural infection or vaccination in humans, a great deal of evidence obtained recently with the susceptible BALB/c murine model of infection by Leishmania major indicates that CD8 T cells participate in both pathogenesis and immunity to cutaneous leishmaniasis. Our goal herein was to identify in silico all parasitic peptides present in the whole L. major predicted proteome, using several public computational systems for the prediction of peptide binding to all MHC (histocompatibility complex-2) molecules in BALB/c and C57BL/6 mice (Syfpeithi, Rankpep, PRED(BALB/c) and Bimas). Peptides that were predicted to bind to different H2 molecules were then analysed for their homology with any of the murine proteins annotated so far, using the BLAST algorithm. Sets of selected peptides for each H2 molecule were defined by different prediction systems and compared to each other. Surprisingly, the results showed that a higher number of L. major peptides were predicted to bind H2 BALB/c molecules and very few or none to bind H2 C57BL/6 molecules. Our finding illustrates how a hybrid immuno-computational approach may be useful for biologists to target an in silico set of selected proteins to define potential candidate antigens for experimental vaccination with greater accuracy as well as a reduced number of T cell antigens.


American Journal of Tropical Medicine and Hygiene | 2010

Lack of Protection of Pre-Immunization with Saliva of Long-Term Colonized Phlebotomus papatasi against Experimental Challenge with Leishmania major and Saliva of Wild-Caught P. papatasi

Sami Ben Hadj Ahmed; Belhassen Kaabi; I. Chelbi; M. Derbali; S. Cherni; Dhafer Laouini; Elyes Zhioua

Immunity to saliva of Phlebotomus papatasi protects against Leishmania major infection as determined by co-inoculation of parasites with salivary gland homogenates (SGHs) of this vector. These results were obtained with long-term colonized female P. papatasi. We investigated the effect of pre-immunization with SGH of long-term colonized P. papatasi against L. major infection co-inoculated with SGH of wild-caught P. papatasi. Our results showed that pre-exposure to SGH of long-term, colonized P. papatasi do not confer protection against infection with L. major co-inoculated with SGH of wild-caught P. papatasi. These preliminary results strongly suggest that the effectiveness of a vector saliva-based vaccine derived from colonized sand fly populations may be affected by inconsistent immune response after natural exposure.


Clinical and Vaccine Immunology | 2009

Comparative Evaluation of Two Vaccine Candidates against Experimental Leishmaniasis Due to Leishmania major Infection in Four Inbred Mouse Strains

Fouad Benhnini; Mehdi Chenik; Dhafer Laouini; Hechmi Louzir; Pierre André Cazenave; Koussay Dellagi

ABSATRCT Experimental leishmaniasis in BALB/c and C57BL/6 mice are the most investigated murine models that were used for the preclinical evaluation of Leishmania vaccine candidates. We have previously described two new inbred mouse strains named PWK and MAI issued from feral founders that also support the development of experimental leishmaniasis due to L. major. In this study, we sought to determine whether different mouse inbred strains generate concordant or discordant results when used to evaluate the potential of Leishmania proteins to protect against experimental leishmaniasis. To this end, two Leishmania proteins, namely, LACK (for Leishmania homolog of receptor for activated C kinase) and LmPDI (for L. major protein disulfide isomerase) were compared for their capacity to protect against experimental leishmaniasis in PWK, MAI, BALB/c, and C57BL/6 inbred mouse strains. Our data show that the capacity of Leishmania proteins to confer protection depends on the mouse strain used, stressing the important role played by the genetic background in shaping the immune response against the pathogen. These results may have important implications for the preclinical evaluation of candidate Leishmania vaccines: rather than using a single mouse strain, a panel of different inbred strains of various genetic backgrounds should be tested in parallel. The antigen that confers protection in the larger range of inbred strains may have better chances to be also protective in outbred human populations and should be selected for clinical trials.


Journal of Agricultural and Food Chemistry | 2014

Lipophilization of ascorbic acid: a monolayer study and biological and antileishmanial activities.

Nadia Kharrat; Imen Aissa; Manel Sghaier; Mohamed Bouaziz; Mohamed Sellami; Dhafer Laouini; Youssef Gargouri

Ascorbyl lipophilic derivatives (Asc-C2 to Asc-C(18:1)) were synthesized in a good yield using lipase from Staphylococcus xylosus produced in our laboratory and immobilized onto silica aerogel. Results showed that esterification had little effect on radical-scavenging capacity of purified ascorbyl esters using DPPH assay in ethanol. However, long chain fatty acid esters displayed higher protection of target lipids from oxidation. Moreover, compared to ascorbic acid, synthesized derivatives exhibited an antibacterial effect. Furthermore, ascorbyl derivatives were evaluated, for the first time, for their antileishmanial effects against visceral (Leishmania infantum) and cutaneous parasites (Leishmania major). Among all the tested compounds, only Asc-C10, Asc-C12, and Asc-C(18:1) exhibited antileishmanial activities. The interaction of ascorbyl esters with a phospholipid monolayer showed that only medium and unsaturated long chain (Asc-C10 to Asc-C(18:1)) derivative esters were found to interact efficiently with mimetic membrane of leishmania. These properties would make ascorbyl derivatives good candidates to be used in cosmetic and pharmaceutical lipophilic formulations.


Parasites & Vectors | 2011

Colonization of Phlebotomus papatasi changes the effect of pre-immunization with saliva from lack of protection towards protection against experimental challenge with Leishmania major and saliva

Sami Ben Hadj Ahmed; Belhassen Kaabi; I. Chelbi; Saifeddine Cherni; M. Derbali; Dhafer Laouini; E. Zhioua

BackgroundSand fly saliva has been postulated as a potential vaccine or as a vaccine component within multi component vaccine against leishmaniasis. It is important to note that these studies were performed using long-term colonized Phlebotomus papatasi. The effect of sand flies colonization on the outcome of Leishmania infection is reported.ResultsWhile pre-immunization of mice with salivary gland homogenate (SGH) of long-term colonized (F5 and beyond) female Phlebotomus papatasi induced protection against Leishmania major co-inoculated with the same type of SGH, pre-immunization of mice with SGH of recently colonized (F2 and F3) female P. papatasi did not confer protection against L. major co-inoculated with the same type of SGH. Our data showed for the first time that a shift from lack of protection to protection occurs at the fourth generation (F4) during the colonization process of P. papatasi.ConclusionFor the development of a sand fly saliva-based vaccine, inferences based on long-term colonized populations of sand flies should be treated with caution as colonization of P. papatasi appears to modulate the outcome of L. major infection from lack of protection to protection.


Infection, Genetics and Evolution | 2011

EuPathDomains: The divergent domain database for eukaryotic pathogens

Amel Ghouila; Nicolas Terrapon; Fatma Z. Guerfali; Dhafer Laouini; Eric Maréchal; Laurent Bréhélin

Eukaryotic pathogens (e.g. Plasmodium, Leishmania, Trypanosomes, etc.) are a major source of morbidity and mortality worldwide. In Africa, one of the most impacted continents, they cause millions of deaths and constitute an immense economic burden. While the genome sequence of several of these organisms is now available, the biological functions of more than half of their proteins are still unknown. This is a serious issue for bringing to the foreground the expected new therapeutic targets. In this context, the identification of protein domains is a key step to improve the functional annotation of the proteins. However, several domains are missed in eukaryotic pathogens because of the high phylogenetic distance of these organisms from the classical eukaryote models. We recently proposed a method, co-occurrence domain detection (CODD), that improves the sensitivity of Pfam domain detection by exploiting the tendency of domains to appear preferentially with a few other favorite domains in a protein. In this paper, we present EuPathDomains (http://www.atgc-montpellier.fr/EuPathDomains/), an extended database of protein domains belonging to ten major eukaryotic human pathogens. EuPathDomains gathers known and new domains detected by CODD, along with the associated confidence measurements and the GO annotations that can be deduced from the new domains. This database significantly extends the Pfam domain coverage of all selected genomes, by proposing new occurrences of domains as well as new domain families that have never been reported before. For example, with a false discovery rate lower than 20%, EuPathDomains increases the number of detected domains by 13% in Toxoplasma gondii genome and up to 28% in Cryptospordium parvum, and the total number of domain families by 10% in Plasmodium falciparum and up to 16% in C. parvum genome. The database can be queried by protein names, domain identifiers, Pfam or Interpro identifiers, or organisms, and should become a valuable resource to decipher the protein functions of eukaryotic pathogens.


Journal of Immunology | 2005

Mechanisms of the Natural Reactivity of Lymphocytes from Noninfected Individuals to Membrane-Associated Leishmania infantum Antigens

Atfa Sassi; Beya Larguèche-Darwaz; Alexis Collette; Adrien Six; Dhafer Laouini; Pierre André Cazenave; Koussay Dellagi

Membrane-associated Leishmania Ags (MLA) or soluble Leishmania Ags were used in vitro to stimulate cord blood or PBMC from healthy donors noninfected by Leishmania parasites. MLA, but not soluble Leishmania Ags, constantly induce strong proliferation of cord blood mononuclear cells and PBMC from noninfected individuals. Responding cells are CD3+, CD4+, TCRαβ+, CD45RO+, and CD45RA+ and secrete IFN-γ and IL-10, but not IL-4. MLA do not activate NK cells nor NKT cells. Membrane Ags also induce purified macrophages from noninfected individuals to secrete IL-10 and TNF-α, but have no effect on IL-1α or IL-12 secretion. The effects of MLA are proteinase K-sensitive and resistant to lipid extraction. The lymphoproliferative responses are inhibited by anti-HLA-DR Abs and require Ag processing by APCs, excluding that the biological effect of MLA could be attributed to a superantigen. Finally, TCR repertoire analysis shows that the T cell expansion induced by MLA uses TCR with various variable β segment rearrangements and CDR3 lengths, features much more characteristic to those observed with a polyclonal activator than with a conventional Ag. These results suggest a particular mechanism developed during the host’s natural response to Leishmania parasites that allows direct activation of naive CD4 lymphocytes by parasite membrane-associated Ags.

Collaboration


Dive into the Dhafer Laouini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koussay Dellagi

University of La Réunion

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge