Dhamodharan Ramasamy
Aix-Marseille University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dhamodharan Ramasamy.
International Journal of Systematic and Evolutionary Microbiology | 2014
Dhamodharan Ramasamy; Ajay Kumar Mishra; Jean-Christophe Lagier; Roshan Padhmanabhan; Morgane Rossi; Erwin Sentausa; Didier Raoult; Pierre-Edouard Fournier
Currently, bacterial taxonomy relies on a polyphasic approach based on the combination of phenotypic and genotypic characteristics. However, the current situation is paradoxical in that the genetic criteria that are used, including DNA-DNA hybridization, 16S rRNA gene sequence nucleotide similarity and phylogeny, and DNA G+C content, have significant limitations, but genome sequences that contain the whole genetic information of bacterial strains are not used for taxonomic purposes, despite the decreasing costs of sequencing and the increasing number of available genomes. Recently, we diversified bacterial culture conditions with the aim of isolating uncultivated bacteria. To classify the putative novel species that we cultivated, we used a polyphasic strategy that included phenotypic as well as genomic criteria (genome characteristics as well as genomic sequence similarity). Herein, we review the pros and cons of genome sequencing for taxonomy and propose that the incorporation of genome sequences in taxonomic studies has the advantage of using reliable and reproducible data. This strategy, which we name taxono-genomics, may contribute to the taxonomic classification of bacteria.
Standards in Genomic Sciences | 2012
Perrine Hugon; Dhamodharan Ramasamy; Jean-Christophe Lagier; Romain Rivet; Carine Couderc; Didier Raoult; Pierre-Edouard Fournier
Alistipes obesi sp. nov. strain ph8T is the type strain of A. obesi, a new species within the genus Alistipes. This strain, whose genome is described here, was isolated from the fecal flora of a 26-year-old woman suffering from morbid obesity. A. obesi is an obligately anaerobic rod. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,162,233 bp long genome (1 chromosome but no plasmid) contains 2,623 protein-coding and 49 RNA genes, including three rRNA genes.
Standards in Genomic Sciences | 2012
Sahare Kokcha; Dhamodharan Ramasamy; Jean-Christophe Lagier; Catherine Robert; Didier Raoult; Pierre-Edouard Fournier
Brevibacterium senegalense strain JC43T sp. nov. is the type strain of Brevibacterium senegalense sp. nov., a new species within the Brevibacterium genus. This strain, whose genome is described here, was isolated from the fecal flora of a healthy Senegalese patient. B. senegalense is an aerobic rod-shaped Gram-positive bacterium. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,425,960 bp long genome (1 chromosome but no plasmid) contains 3,064 protein-coding and 49 RNA genes.
Standards in Genomic Sciences | 2012
Dhamodharan Ramasamy; Sahare Kokcha; Jean-Christophe Lagier; Thi-Thien Nguyen; Didier Raoult; Pierre-Edouard Fournier
Aeromicrobium massiliense strain JC14Tsp. nov. is the type strain of Aeromicrobium massiliense sp. nov., a new species within the genus Aeromicrobium. This strain, whose genome is described here, was isolated from the fecal microbiota of an asymptomatic patient. Aeromicrobium massiliense is an aerobic rod-shaped gram-positive bacterium. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,322,119 bp long genome contains 3,296 protein-coding and 51 RNA genes.
Standards in Genomic Sciences | 2012
Jean-Christophe Lagier; Dhamodharan Ramasamy; Romain Rivet; Didier Raoult; Pierre-Edouard Fournier
Cellulomonas massiliensis strain JC225T sp. nov. is the type strain of Cellulomonas massiliensis sp., a new species within the genus Cellulomonas. This strain, whose genome is described here, was isolated from the fecal flora of a healthy Senegalese patient. C. massiliensis is an aerobic rod-shaped bacterium. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,407,283 bp long genome contains 3,083 protein-coding and 48 RNA genes.
Standards in Genomic Sciences | 2013
Dhamodharan Ramasamy; Jean-Christophe Lagier; Thi Tien Nguyen; Didier Raoult; Pierre-Edouard Fournier
Dielma fastidiosa strain JC13T gen. nov., sp. nov. is the type strain of D. fastidiosa gen. nov., sp. nov., the type species of a new genus within the family Erysipelotrichaceae. This strain, whose draft genome is described here, was isolated from the fecal flora of a healthy 16-year-old male Senegalese volunteer. D. fastidiosa is a Gram-negative anaerobic rod. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,574,031 bp long genome comprises a 3,556,241-bp chromosome and a 17,790-bp plasmid. The chromosome contains 3,441 protein-coding and 50 RNA genes, including 3 rRNA genes, whereas the plasmid contains 17 protein-coding genes.
Standards in Genomic Sciences | 2013
Dhamodharan Ramasamy; Jean-Christophe Lagier; Aurore Gorlas; Didier Raoult; Pierre-Edouard Fournier
Bacillus massiliosenegalensis strain JC6T sp. nov. is the type strain of Bacillus massiliosenegalensis sp. nov., a new species within the genus Bacillus. This strain was isolated from the fecal flora of a healthy Senegalese patient. B. massiliosenegalensis is an aerobic Gram-positive rod-shaped bacterium. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 4,981,278-bp long genome comprises a 4,957,301-bp chromosome and a 23,977-bp plasmid. The chromosome contains 4,925 protein-coding and 72 RNA genes, including 4 rRNA genes. The plasmid contains 29 protein-coding genes.
Standards in Genomic Sciences | 2013
Perrine Hugon; Dhamodharan Ramasamy; Catherine Robert; Carine Couderc; Didier Raoult; Pierre-Edouard Fournier
Kallipyga massiliensis strain ph2T is the type strain of Kallipyga massiliensis gen. nov., sp. nov., the type species of the new genus Kallipyga within the family Clostridiales Incertae Sedis XI. This strain, whose genome is described here, was isolated from the fecal flora of a 26-year-old woman suffering from morbid obesity. K. massiliensis is an obligate anaerobic coccus. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,770,679 bp long genome (1 chromosome but no plasmid) contains 1,575 protein-coding and 50 RNA genes, including 4 rRNA genes.
Standards in Genomic Sciences | 2014
Dhamodharan Ramasamy; Grégory Dubourg; Catherine Robert; Aurelia Caputo; Laurent Papazian; Didier Raoult; Pierre-Edouard Fournier
Enorma timonensis strain GD5T sp. nov., is the type strain of E. timonensis sp. nov., a new member of the genus Enorma within the family Coriobacteriaceae. This strain, whose genome is described here, was isolated from the fecal flora of a 53-year-old woman hospitalized for 3 months in an intensive care unit. E. timonensis is an obligate anaerobic rod. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,365,123 bp long genome (1 chromosome but no plasmid) contains 2,060 protein-coding and 52 RNA genes, including 4 rRNA genes.
Standards in Genomic Sciences | 2014
Dhamodharan Ramasamy; Jean-Christophe Lagier; Morgane Rossi-Tamisier; Anne Pfleiderer; Caroline Michelle; Carine Couderc; Didier Raoult; Pierre-Edouard Fournier
Bacteroides timonensis strain AP1T (= CSUR P194 = DSM 26083) is the type strain of B. timonensis sp. nov. This strain, whose genome is described here, was isolated from the fecal flora of a 21-year-old French Caucasoid female who suffered from severe anorexia nervosa. Bacteroides timonensis is a Gram-negative, obligate anaerobic bacillus. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 7,130,768 bp long genome (1 chromosome, no plasmid) exhibits a G+C content of 43.3% and contains 5,786 protein-coding and 59 RNA genes, including 2 rRNA genes.