Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dharamainder Choudhary is active.

Publication


Featured researches published by Dharamainder Choudhary.


Archives of Biochemistry and Biophysics | 2003

Comparative expression profiling of 40 mouse cytochrome P450 genes in embryonic and adult tissues

Dharamainder Choudhary; Ingela Jansson; John B. Schenkman; Mansoor Sarfarazi; Ivaylo Stoilov

This study is the first systematic investigation of the gestational age-dependent and adult tissue-specific expression patterns of each known mouse CYP family (40 genes) using normalized cDNA panels and uniform reverse transcriptase polymerase chain reaction-based assays. Twenty-seven of the P450s were constitutively expressed during development. The number gradually increased through the phases of gastrulation E7 (n=14), neural patterning and somitogenesis E11 (n=17), organogenesis E15 (n=20), and fetal period E17 (n=21). Cyp2s1, Cyp8a1, Cyp20, Cyp21a1, Cyp26a1, Cyp46, and Cyp51 were detected in each of the four stages studied. Members of family CYP1 demonstrated complex, nonoverlapping embryonic patterns of expression, indicating that Cyp1a1 and Cyp1a2 may not compensate for Cyp1b1 deficiency associated with abnormal eye development. Multiple Cyp forms were found to be constitutively expressed in each of the adult tissues studied: liver (n=31), kidney (n=30), testis (n=26), lung (n=24), and heart (n=13). The tissue-specific P450-expression profiles reported in this study provide a reference for more focused analysis of the tissue-specific and developmental functions of the cytochrome P450 monooxygenases.


Pharmacogenetics and Genomics | 2008

Characterization of the biochemical and structural phenotypes of four CYP1B1 mutations observed in individuals with primary congenital glaucoma.

Dharamainder Choudhary; Ingela Jansson; Mansoor Sarfarazi; John B. Schenkman

Objective The objective of this study was to examine the biochemical and physical properties of cytochrome P450 1B1 (CYP1B1) mutants, test our hypothesis that primary congenital glaucoma (PCG)-causing mutants have altered metabolic activity, and correlate these to structural changes in the molecule. Methods CYP1B1.1 cDNA was mutated to four forms found in individuals with the PCG phenotype, Y81N, E229K, A330F, and R368H. Expression and stability of the mutant hemoproteins and their ability to metabolize &bgr;-estradiol, arachidonic acid, and retinoids, were determined. Alterations in mutant properties were related to structural changes by in silico examination, on the basis of the CYP1A2 crystal structure. Results CYP1B1 mutations strongly affected the stability, ease of heterologous expression, and enzymatic properties of the protein. These were related to the location of the amino acid substitutions in the CYP1B1 structure. Three of the mutations involve residues located on the surface of CYP1B1, Y81N, and E229K near the distal surface, and R368H near the proximal surface. The former two substitutions, Y81N and E229K, caused greatly reduced stability at 4°C. Y81N severely inhibited all substrate turnover, but E229K only inhibited arachidonate turnover and exhibited minimal effect on efficiency of retinoid metabolism and estradiol metabolism. The R368H mutation is relatively conservative, affecting charge-pairing with the deeper-located D374, but it severely inhibited metabolism of all substrates tested, and, like Y81N, expression of the enzyme is less facile than CYP1B1wt. The A330F mutation replaces a small alanine by a bulky phenylalanine in the enzyme active site and had major impact on substrate binding, turnover, uncoupling, and metabolite pattern. Conclusion Consistent with the hypothesis, these PCG-related mutations cause identifiable structural changes negatively impacting CYP1B1 biochemistry and stability.


Journal of Polymer Science Part B | 2000

Study of carbonaceous clusters in irradiated polycarbonate with UV–vis spectroscopy

S. Gupta; Dharamainder Choudhary; Asiti Sarma

The formation of carbonaceous clusters in ion-irradiated polymer films was investigated extensively. Information about these clusters may be obtained with ultraviolet–visible (UV–vis) spectroscopy. The optical band gap (Eg), calculated from the absorption edge of the UV spectra of these polymers, can be correlated to the number of carbon atoms (N) in a cluster with the modified Tauc equation. The structure of the cluster is also related to Eg; for example, a six-membered-benzene-ring-type structure has an Eg of ≈5.3 eV, whereas a buckminsterfullerene-type structure has an Eg of ≈4.9 eV. These clusters are responsible for the electrical conductivity in these films. In this work, polycarbonate films (20 μm thick) were irradiated with 45-MeV Li ions at fluences of 1 × 1012 to 1 × 1013 cm−2 and were characterized with UV–vis spectroscopy and impedance measurements. The Eg values, calculated from the absorption edge in the 280–315-nm region with the Tauc relation, varied from 4.39 to 4.35 eV for the pristine and various irradiated samples, respectively. The cluster size showed a range of 60–62 carbon atoms per cluster. The sheet conductivity (σdc) and loss (tan δ) values of 10−16 Ω−1cm−1 and 10−3 for the pristine sample changed to 10−15 Ω−1cm−1 and 10−2, respectively, for the irradiated samples. This increase in the values of σdc and tan δ may be correlated to the increase in the size of the carbonaceous clusters. This study provides insight into the mechanism of electrical conductivity in irradiated polymers.


Molecular and Cellular Biochemistry | 2001

Radiation induced oxidative stress: I. Studies in Ehrlich solid tumor in mice.

Anjali Agrawal; Dharamainder Choudhary; Meenakshi Upreti; Pramod C. Rath; R.K. Kale

Understanding the response of tumors to ionizing radiation might potentially lead to improvement in tumor control and patient morbidity. Since the antioxidant status is likely to be linked to radioresponse, its modulation needs to be examined. Therefore, Swiss albino male mice (7–8 weeks old) with Ehrlich solid tumors were irradiated with different doses of gamma rays (0–9 Gy) at a dose rate of 0.0153 Gy/s; and enzymes involved in antioxidant functions were determined in the tumors. Radiation effects in terms of oxidative damage, LDH, nitric oxide and DNA fragmentation were also examined.In tumors, the specific activity of SOD was increased with dose but declined 6 Gy onwards. GST, DTD and GSH showed an almost progressive increase. These enhanced activities might have resulted from the increased protein expression. This possibility was supported by the Western Blot analysis for GST protein. These changes might be closely linked to the radiation-induced oxidative stress as reflected by the enhanced levels of peroxidative damage, DNA fragmentation, LDH activity and nitric oxide levels. These findings may have relevance to radiation therapy of cancer as the elevated antioxidant status of irradiated tumors is likely to limit the effectiveness of radiation dose and adversely affect the therapeutic gain.


Drug Metabolism and Disposition | 2007

Cyp1b1 Protein in the Mouse Eye during Development: An Immunohistochemical Study

Dharamainder Choudhary; Ingela Jansson; Karim Rezaul; David K. Han; Mansoor Sarfarazi; John B. Schenkman

We show, for the first time, the spatiotemporal appearance of Cyp1b1 protein during mouse eye ontogeny. The protein was unambiguously identified in the adult mouse eye and newborn (P0) whole mouse microsomes and was shown to be localized in inner ciliary epithelium, corneal epithelium, retinal inner nuclear cells, and ganglion cells. The enzyme protein was present in the lens epithelium adjacent to the developing ciliary body at 15.5 days postconception (E15.5) and was most strongly expressed during E17.5 to 7 days postnatally (P07). Subsequently, it declined to very low levels. The protein was also expressed in the corneal endothelial cells adjacent to the ciliary body at P07. Cyp1b1 was barely detectable in the inner ciliary epithelium before E17.5 but increased rapidly postnatally, reaching adult levels by P28. Levels of the enzyme protein in the corneal epithelium were seen from E15.5 onward, increasing sharply, and after a decrease at P07, were highest in the adult animal eye. The presence of Cyp1b1 protein in the inner nuclear layer of the retina was very low in the prenatal eye, increasing rapidly postnatally, and was highest in the adult animal eye. In the ganglion cell layer of the retina, it increased slowly from E15.5 to P07 and then rapidly reached adult levels. Interestingly, Cyp1b1 was not detected in the trabecular meshwork at any stage of development or in the adult eye. We conclude that the enzyme may play important roles in normal eye development and function in mice as in humans, and that the mouse may prove to be an excellent model for determination of the roles of CYP1B1 in human eye development and function.


Drug Metabolism Reviews | 2004

Xenobiotic‐metabolizing Cytochromes P450 in Ontogeny: Evolving Perspective

Dharamainder Choudhary; Ingela Jansson; Mansoor Sarfarazi; John B. Schenkman

While much is known about inducibility of the xenobiotic‐metabolizing forms of cytochrome P450, the Family 1–3 enzymes, less well understood is the purpose for the presence of some of these forms in the developing conceptus. Many cytochrome P450 forms are present in the embryo and fetus, like the anabolic forms in Families 5 and higher, and are known to produce molecules with specific functions, e.g., cholesterol, steroids, and their metabolites necessary for normal physiological functions. As we gain greater understanding of the cell cycle and its regulation, and the roles of nuclear receptors in modulating transcriptional activities, a picture begins to emerge in which cytochrome P450 forms appear as molecule‐altering enzymes producing and eliminating ligands associated with nuclear receptor activities. For these CYP enzymes to exert a developmental action, a controlled spatial and temporal expression pattern would be essential. Studies now indicate the existence of such temporal control on the appearance of a number of these enzymes and the necessary coenzyme, NADPH‐cytochrome P450 reductase.


Drug Metabolism Reviews | 2006

Physiological significance and expression of P450s in the developing eye.

Dharamainder Choudhary; Ingela Jansson; Mansoor Sarfarazi; John B. Schenkman

Expression of 10 CYP orthologs (Families 1–3) in developing mouse conceptus is constitutive. These forms have specific temporal and spatial expression. Studies on CYP1B1 indicate its requirement for normal eye development, both in human and mouse. The distribution of the enzyme in the mouse eye is in three regions, which may reflect three different, perhaps equally important, functions in this organ. Its presence in the inner ciliary and lens epithelia appears to be necessary for normal development of the trabecular meshwork and its function in regulating intraocular pressure. Its expression in the retinal ganglion and inner nuclear layers may reflect a role in maintenance of the visual cycle. Its expression in the corneal epithelium may indicate a function in metabolism of environmental xenobiotics.


Carcinogenesis | 2013

Macrophage migratory inhibitory factor promotes bladder cancer progression via increasing proliferation and angiogenesis

Shilpa Choudhary; Poornima Hegde; James Pruitt; Thais Sielecki; Dharamainder Choudhary; Kristen Scarpato; David J. DeGraff; Carol C. Pilbeam; John A. Taylor

Macrophage migratory inhibitory factor (MIF) is a proinflammatory cytokine shown to promote tumorigenesis. Using the N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) model of bladder cancer, we previously showed that MIF knockout mice display decreased angiogenesis and invasion compared with wild-type. This study examines the role of MIF in bladder cancer via use of oral inhibitors of MIF. In vitro, high-grade bladder cancer cells were treated with recombinant human MIF +/- (rhMIF+/-) inhibitor. Measurements included cell counts, proliferation by (3)H-thymidine incorporation (TdR), extracellular signal-regulated kinase (ERK) phosphorylation by western blot analysis, messenger RNA (mRNA) expression by quantitative PCR and protein secretion by enzyme-linked immunosorbent assay. Treatment with rhMIF increased ERK phosphorylation, cell counts, TdR and mRNA expression and protein secretion of vascular endothelial growth factor, which were blocked by specific inhibitors of ERK and MIF. In vivo, 3-month-old male C57Bl/6 mice were given BBN for 22 and 16 weeks in study 1 and study 2, respectively. Mice (n = 8-10 per group) were gavaged with vehicle or doses of MIF inhibitors daily from weeks 16-22 in both studies. Average bladder weights, reflecting tumor mass, tumor stage/burden, mitotic rate and proliferation indices, and microvessel densities were reduced in inhibitor groups versus controls. In summary, MIF promotes bladder cancer via increasing cell proliferation and angiogenesis and oral inhibitors of MIF may prove useful in treatment of this disease.


Xenobiotica | 2009

CYP1B1, a developmental gene with a potential role in glaucoma therapy

Dharamainder Choudhary; Ingela Jansson; John B. Schenkman

The association of CYP1B1 gene alterations in primary congenital glaucoma individuals has been known for about a decade. Recent evidence has shown the involvement of CYP1B1 mutations in a number of forms of glaucoma and anterior segment disorders. This suggests a wide role for CYP1B1 in ocular physiology. Histochemical studies of eyes from individuals with primary congenital glaucoma revealed abnormalities in the anterior chamber angle, the region between the cornea and the iris, containing the trabecular meshwork. The cells of the trabecular meshwork serve as a filter to allow drainage of the aqueous humour, the fluid formed by the ciliary body that fills the anterior chamber. Mutations in CYP1B1 that affect its activity have frequently been shown to influence development of the trabecular meshwork, and it is thought that CYP1B1, a monooxygenase, acts to form or degrade some endobiotic compound that is necessary for proper development of the filtering structures. The rapidly developing area of stem cell research suggests a potential therapeutic approach for glaucomas resulting from deleterious mutations in CYP1B1, that is, the transfer of stem cells, differentiated to a specific lineage, containing wild-type CYP1B1 to specific regions of the eye, where they will develop into normal cells of that region and rectify the defect.


Analytical Chemistry | 2008

Accurate DNA Fragment Sizing by Capillary Electrophoresis with Laser-Induced Fluorescence Array for Detection of Sequence Specificity of DNA Damage

Erwin V. Fundador; Dharamainder Choudhary; John B. Schenkman; James F. Rusling

Cancer has been linked to mutations within specific codons in genes that code for critical biomolecules such as tumor suppressor proteins (e.g., p53). Activated metabolites like benzo[a]pyrenediol epoxide act on preferred nucleotide sequences of DNA, and such mutations have been identified in cancers. DNA reaction site identification depends on accurate analysis of oligonucleotide fragment sizes produced by strand breakage at the damaged sites. Herein, we report a new method for DNA fragment sizing using capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). Absolute sizing accuracy and speed are achieved by utilizing a CE-LIF array with two-color fluorescence detection. Accuracy depends on correcting results with commercial standards by referring them to primary standards with the same sequences and identical labels as sample fragments. The method is demonstrated by detection of a [...GGCGCGCAG...] G reaction site for styrene oxide on an oligonucleotide representing the CYP1B1 gene. This approach avoids the need for radioactive isotopes and is less labor intensive and faster than the alternative PAGE with (32)P end labeling.

Collaboration


Dive into the Dharamainder Choudhary's collaboration.

Top Co-Authors

Avatar

John B. Schenkman

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Ingela Jansson

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Mansoor Sarfarazi

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Carol C. Pilbeam

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Taylor

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Ivaylo Stoilov

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Shilpa Choudhary

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Spundana Malla

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

John E. Taylor

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge