Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dharmendra S. Modha is active.

Publication


Featured researches published by Dharmendra S. Modha.


Machine Learning | 2001

Concept Decompositions for Large Sparse Text Data Using Clustering

Inderjit S. Dhillon; Dharmendra S. Modha

Unlabeled document collections are becoming increasingly common and available; mining such data sets represents a major contemporary challenge. Using words as features, text documents are often represented as high-dimensional and sparse vectors–a few thousand dimensions and a sparsity of 95 to 99% is typical. In this paper, we study a certain spherical k-means algorithm for clustering such document vectors. The algorithm outputs k disjoint clusters each with a concept vector that is the centroid of the cluster normalized to have unit Euclidean norm. As our first contribution, we empirically demonstrate that, owing to the high-dimensionality and sparsity of the text data, the clusters produced by the algorithm have a certain “fractal-like” and “self-similar” behavior. As our second contribution, we introduce concept decompositions to approximate the matrix of document vectors; these decompositions are obtained by taking the least-squares approximation onto the linear subspace spanned by all the concept vectors. We empirically establish that the approximation errors of the concept decompositions are close to the best possible, namely, to truncated singular value decompositions. As our third contribution, we show that the concept vectors are localized in the word space, are sparse, and tend towards orthonormality. In contrast, the singular vectors are global in the word space and are dense. Nonetheless, we observe the surprising fact that the linear subspaces spanned by the concept vectors and the leading singular vectors are quite close in the sense of small principal angles between them. In conclusion, the concept vectors produced by the spherical k-means algorithm constitute a powerful sparse and localized “basis” for text data sets.


knowledge discovery and data mining | 2003

Information-theoretic co-clustering

Inderjit S. Dhillon; Subramanyam Mallela; Dharmendra S. Modha

Two-dimensional contingency or co-occurrence tables arise frequently in important applications such as text, web-log and market-basket data analysis. A basic problem in contingency table analysis is co-clustering: simultaneous clustering of the rows and columns. A novel theoretical formulation views the contingency table as an empirical joint probability distribution of two discrete random variables and poses the co-clustering problem as an optimization problem in information theory---the optimal co-clustering maximizes the mutual information between the clustered random variables subject to constraints on the number of row and column clusters. We present an innovative co-clustering algorithm that monotonically increases the preserved mutual information by intertwining both the row and column clusterings at all stages. Using the practical example of simultaneous word-document clustering, we demonstrate that our algorithm works well in practice, especially in the presence of sparsity and high-dimensionality.


Science | 2014

A million spiking-neuron integrated circuit with a scalable communication network and interface

Paul A. Merolla; John V. Arthur; Rodrigo Alvarez-Icaza; Andrew S. Cassidy; Jun Sawada; Filipp Akopyan; Bryan L. Jackson; Nabil Imam; Chen Guo; Yutaka Nakamura; Bernard Brezzo; Ivan Vo; Steven K. Esser; Rathinakumar Appuswamy; Brian Taba; Arnon Amir; Myron Flickner; William P. Risk; Rajit Manohar; Dharmendra S. Modha

Modeling computer chips on real brains Computers are nowhere near as versatile as our own brains. Merolla et al. applied our present knowledge of the structure and function of the brain to design a new computer chip that uses the same wiring rules and architecture. The flexible, scalable chip operated efficiently in real time, while using very little power. Science, this issue p. 668 A large-scale computer chip mimics many features of a real brain. Inspired by the brain’s structure, we have developed an efficient, scalable, and flexible non–von Neumann architecture that leverages contemporary silicon technology. To demonstrate, we built a 5.4-billion-transistor chip with 4096 neurosynaptic cores interconnected via an intrachip network that integrates 1 million programmable spiking neurons and 256 million configurable synapses. Chips can be tiled in two dimensions via an interchip communication interface, seamlessly scaling the architecture to a cortexlike sheet of arbitrary size. The architecture is well suited to many applications that use complex neural networks in real time, for example, multiobject detection and classification. With 400-pixel-by-240-pixel video input at 30 frames per second, the chip consumes 63 milliwatts.


knowledge discovery and data mining | 1999

A Data-Clustering Algorithm on Distributed Memory Multiprocessors

Inderjit S. Dhillon; Dharmendra S. Modha

To cluster increasingly massive data sets that are common today in data and text mining, we propose a parallel implementation of the k-means clustering algorithm based on the message passing model. The proposed algorithm exploits the inherent data-parallelism in the kmeans algorithm. We analytically show that the speedup and the scaleup of our algorithm approach the optimal as the number of data points increases. We implemented our algorithm on an IBM POWERparallel SP2 with a maximum of 16 nodes. On typical test data sets, we observe nearly linear relative speedups, for example, 15.62 on 16 nodes, and essentially linear scaleup in the size of the data set and in the number of clusters desired. For a 2 gigabyte test data set, our implementation drives the 16 node SP2 at more than 1.8 gigaflops.


Machine Learning | 2003

Feature Weighting in k -Means Clustering

Dharmendra S. Modha; W. Scott Spangler

Data sets with multiple, heterogeneous feature spaces occur frequently. We present an abstract framework for integrating multiple feature spaces in the k-means clustering algorithm. Our main ideas are (i) to represent each data object as a tuple of multiple feature vectors, (ii) to assign a suitable (and possibly different) distortion measure to each feature space, (iii) to combine distortions on different feature spaces, in a convex fashion, by assigning (possibly) different relative weights to each, (iv) for a fixed weighting, to cluster using the proposed convex k-means algorithm, and (v) to determine the optimal feature weighting to be the one that yields the clustering that simultaneously minimizes the average within-cluster dispersion and maximizes the average between-cluster dispersion along all the feature spaces. Using precision/recall evaluations and known ground truth classifications, we empirically demonstrate the effectiveness of feature weighting in clustering on several different application domains.


custom integrated circuits conference | 2011

A digital neurosynaptic core using embedded crossbar memory with 45pJ per spike in 45nm

Paul A. Merolla; John V. Arthur; Filipp Akopyan; Nabil Imam; Rajit Manohar; Dharmendra S. Modha

The grand challenge of neuromorphic computation is to develop a flexible brain-like architecture capable of a wide array of real-time applications, while striving towards the ultra-low power consumption and compact size of the human brain—within the constraints of existing silicon and post-silicon technologies. To this end, we fabricated a key building block of a modular neuromorphic architecture, a neurosynaptic core, with 256 digital integrate-and-fire neurons and a 1024×256 bit SRAM crossbar memory for synapses using IBMs 45nm SOI process. Our fully digital implementation is able to leverage favorable CMOS scaling trends, while ensuring one-to-one correspondence between hardware and software. In contrast to a conventional von Neumann architecture, our core tightly integrates computation (neurons) alongside memory (synapses), which allows us to implement efficient fan-out (communication) in a naturally parallel and event-driven manner, leading to ultra-low active power consumption of 45pJ/spike. The core is fully configurable in terms of neuron parameters, axon types, and synapse states and is thus amenable to a wide range of applications. As an example, we trained a restricted Boltzmann machine offline to perform a visual digit recognition task, and mapped the learned weights to our chip.


acm conference on hypertext | 2000

Clustering hypertext with applications to web searching

Dharmendra S. Modha; W. Scott Spangler

A method and structure of searching a database containing hypertext documents comprising searching the database using a query to produce a set of hypertext documents; and geometrically clustering the set of hypertext documents into various clusters using a toric k-means similarity measure such that documents within each cluster are similar to each other, wherein the clustering has a linear-time complexity in producing the set of hypertext documents, wherein the similarity measure comprises a weighted sum of maximized individual components of the set of hypertext documents, and wherein the clustering is based upon words contained in each hypertext document, out-links from each hypertext document, and in-links to each hypertext document.


ieee international conference on high performance computing data and analytics | 2009

The cat is out of the bag: cortical simulations with 10 9 neurons, 10 13 synapses

Rajagopal Ananthanarayanan; Steven K. Esser; Horst D. Simon; Dharmendra S. Modha

In the quest for cognitive computing, we have built a massively parallel cortical simulator, C2, that incorporates a number of innovations in computation, memory, and communication. Using C2 on LLNLs Dawn Blue Gene/P supercomputer with 147, 456 CPUs and 144 TB of main memory, we report two cortical simulations -- at unprecedented scale -- that effectively saturate the entire memory capacity and refresh it at least every simulated second. The first simulation consists of 1.6 billion neurons and 8.87 trillion synapses with experimentally-measured gray matter thalamocortical connectivity. The second simulation has 900 million neurons and 9 trillion synapses with probabilistic connectivity. We demonstrate nearly perfect weak scaling and attractive strong scaling. The simulations, which incorporate phenomenological spiking neurons, individual learning synapses, axonal delays, and dynamic synaptic channels, exceed the scale of the cat cortex, marking the dawn of a new era in the scale of cortical simulations.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Network architecture of the long-distance pathways in the macaque brain

Dharmendra S. Modha; Raghavendra Singh

Understanding the network structure of white matter communication pathways is essential for unraveling the mysteries of the brains function, organization, and evolution. To this end, we derive a unique network incorporating 410 anatomical tracing studies of the macaque brain from the Collation of Connectivity data on the Macaque brain (CoCoMac) neuroinformatic database. Our network consists of 383 hierarchically organized regions spanning cortex, thalamus, and basal ganglia; models the presence of 6,602 directed long-distance connections; is three times larger than any previously derived brain network; and contains subnetworks corresponding to classic corticocortical, corticosubcortical, and subcortico-subcortical fiber systems. We found that the empirical degree distribution of the network is consistent with the hypothesis of the maximum entropy exponential distribution and discovered two remarkable bridges between the brains structure and function via network-theoretical analysis. First, prefrontal cortex contains a disproportionate share of topologically central regions. Second, there exists a tightly integrated core circuit, spanning parts of premotor cortex, prefrontal cortex, temporal lobe, parietal lobe, thalamus, basal ganglia, cingulate cortex, insula, and visual cortex, that includes much of the task-positive and task-negative networks and might play a special role in higher cognition and consciousness.


Communications of The ACM | 2011

Cognitive computing

Dharmendra S. Modha; Rajagopal Ananthanarayanan; Steven K. Esser; Anthony Ndirango; Anthony J. Sherbondy; Raghavendra Singh

Unite neuroscience, supercomputing, and nanotechnology to discover, demonstrate, and deliver the brains core algorithms.

Researchain Logo
Decentralizing Knowledge