Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dharshana Padmakshan is active.

Publication


Featured researches published by Dharshana Padmakshan.


Science | 2014

Monolignol Ferulate Transferase Introduces Chemically Labile Linkages into the Lignin Backbone

Curtis G. Wilkerson; Shawn D. Mansfield; Fachuang Lu; Saunia Withers; Ji-Young Park; Steven D. Karlen; Eliana Gonzales-Vigil; Dharshana Padmakshan; Faride Unda; Jorge Rencoret; John Ralph

Constructed for Deconstruction Lignin provides strength to wood but also impedes efficient degradation when wood is used as biofuel. Wilkerson et al. (p. 90) engineered poplar to produce lignin that is more amenable to degradation. From a handful of plants that contain more digestible lignin monomers, Angelica sinensis was selected and its monolignol transferase activities analyzed. The enzyme involved, coniferyl ferulate feruloyl-CoA monolignol transferase, was then expressed in poplar. The resulting poplar trees showed no difference in growth habit under greenhouse conditions, but their lignin showed improved digestibility. Engineered poplar lignin with readily cleavable ester bonds in the polymer backbone improves wood degradability. Redesigning lignin, the aromatic polymer fortifying plant cell walls, to be more amenable to chemical depolymerization can lower the energy required for industrial processing. We have engineered poplar trees to introduce ester linkages into the lignin polymer backbone by augmenting the monomer pool with monolignol ferulate conjugates. Herein, we describe the isolation of a transferase gene capable of forming these conjugates and its xylem-specific introduction into poplar. Enzyme kinetics, in planta expression, lignin structural analysis, and improved cell wall digestibility after mild alkaline pretreatment demonstrate that these trees produce the monolignol ferulate conjugates, export them to the wall, and use them during lignification. Tailoring plants to use such conjugates during cell wall biosynthesis is a promising way to produce plants that are designed for deconstruction.


Plant Journal | 2014

p‐Coumaroyl‐CoA:monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon

Deborah L. Petrik; Steven D. Karlen; Cynthia L. Cass; Dharshana Padmakshan; Fachuang Lu; Sarah Liu; Philippe Le Bris; Sébastien Antelme; Nicholas Santoro; Curtis G. Wilkerson; Richard Sibout; Catherine Lapierre; John Ralph; John C. Sedbrook

Grass lignins contain substantial amounts of p-coumarate (pCA) that acylate the side-chains of the phenylpropanoid polymer backbone. An acyltransferase, named p-coumaroyl-CoA:monolignol transferase (OsPMT), that could acylate monolignols with pCA in vitro was recently identified from rice. In planta, such monolignol-pCA conjugates become incorporated into lignin via oxidative radical coupling, thereby generating the observed pCA appendages; however p-coumarates also acylate arabinoxylans in grasses. To test the authenticity of PMT as a lignin biosynthetic pathway enzyme, we examined Brachypodium distachyon plants with altered BdPMT gene function. Using newly developed cell wall analytical methods, we determined that the transferase was involved specifically in monolignol acylation. A sodium azide-generated Bdpmt-1 missense mutant had no (<0.5%) residual pCA on lignin, and BdPMT RNAi plants had levels as low as 10% of wild-type, whereas the amounts of pCA acylating arabinosyl units on arabinoxylans in these PMT mutant plants remained unchanged. pCA acylation of lignin from BdPMT-overexpressing plants was found to be more than three-fold higher than that of wild-type, but again the level on arabinosyl units remained unchanged. Taken together, these data are consistent with a defined role for grass PMT genes in encoding BAHD (BEAT, AHCT, HCBT, and DAT) acyltransferases that specifically acylate monolignols with pCA and produce monolignol p-coumarate conjugates that are used for lignification in planta.


Science Advances | 2016

Monolignol ferulate conjugates are naturally incorporated into plant lignins

Steven D. Karlen; Chengcheng Zhang; Matthew L. Peck; Rebecca A. Smith; Dharshana Padmakshan; Kate E. Helmich; Heather C.A. Free; Seonghee Lee; Bronwen G. Smith; Fachuang Lu; John C. Sedbrook; Richard Sibout; John H. Grabber; Troy Runge; Kirankumar S. Mysore; Philip J. Harris; Laura E. Bartley; John Ralph

Plants have convergently evolved to use monolignol ferulate conjugates to produce lignins containing chemically labile backbone esters. Angiosperms represent most of the terrestrial plants and are the primary research focus for the conversion of biomass to liquid fuels and coproducts. Lignin limits our access to fibers and represents a large fraction of the chemical energy stored in plant cell walls. Recently, the incorporation of monolignol ferulates into lignin polymers was accomplished via the engineering of an exotic transferase into commercially relevant poplar. We report that various angiosperm species might have convergently evolved to natively produce lignins that incorporate monolignol ferulate conjugates. We show that this activity may be accomplished by a BAHD feruloyl–coenzyme A monolignol transferase, OsFMT1 (AT5), in rice and its orthologs in other monocots.


Plant Physiology | 2017

Highly Decorated Lignins in Leaf Tissues of the Canary Island Date Palm Phoenix canariensis

Steven D. Karlen; Rebecca A. Smith; Hoon Kim; Dharshana Padmakshan; Allison Bartuce; Justin K. Mobley; Heather C.A. Free; Bronwen G. Smith; Philip J. Harris; John Ralph

Phoenix canariensis leaf lignins vary between tissue region and contain an array of pendent groups. The cell walls of leaf base tissues of the Canary Island date palm (Phoenix canariensis) contain lignins with the most complex compositions described to date. The lignin composition varies by tissue region and is derived from traditional monolignols (ML) along with an unprecedented range of ML conjugates: ML-acetate, ML-benzoate, ML-p-hydroxybenzoate, ML-vanillate, ML-p-coumarate, and ML-ferulate. The specific functions of such complex lignin compositions are unknown. However, the distribution of the ML conjugates varies depending on the tissue region, indicating that they may play specific roles in the cell walls of these tissues and/or in the plant’s defense system.


Biomacromolecules | 2017

Characterization and Elimination of Undesirable Protein Residues in Plant Cell Wall Materials for Enhancing Lignin Analysis by Solution-State Nuclear Magnetic Resonance Spectroscopy

Hoon Kim; Dharshana Padmakshan; Yanding Li; Jorge Rencoret; Ronald D. Hatfield; John Ralph

Protein polymers exist in every plant cell wall preparation, and they interfere with lignin characterization and quantification. Here, we report the structural characterization of the residual protein peaks in 2D NMR spectra in corn cob and kenaf samples and note that aromatic amino acids are ubiquitous and evident in spectra from various other plants and tissues. The aromatic correlations from amino acid residues were identified and assigned as phenylalanine and tyrosine. Phenylalanines 3/5 correlation peak is superimposed on the peak from typical lignin p-hydroxyphenyl (H-unit) structures, causing an overestimation of the H units. Protein contamination also occurs when using cellulases to prepare enzyme lignins from virtually protein-free wood samples. We used a protease to remove the protein residues from the ball-milled cell walls, and we were able to reveal H-unit structures in lignins more clearly in the 2D NMR spectra, providing a better basis for their estimation.


Plant Physiology | 2017

Silencing CAFFEOYL SHIKIMATE ESTERASE Affects Lignification and Improves Saccharification in Poplar

Marina de Lyra Soriano Saleme; Igor Cesarino; Lívia Vargas; Hoon Kim; Ruben Vanholme; Geert Goeminne; Rebecca Van Acker; Fernando Campos de Assis Fonseca; Andreas Pallidis; Wannes Voorend; José Nicomedes; Dharshana Padmakshan; Jan Van Doorsseleare; John Ralph; Wout Boerjan

Down-regulation of CSE in poplar reduces lignin content, leading to a higher glucose release per plant upon saccharification. Caffeoyl shikimate esterase (CSE) was recently shown to play an essential role in lignin biosynthesis in Arabidopsis (Arabidopsis thaliana) and later in Medicago truncatula. However, the general function of this enzyme was recently questioned by the apparent lack of CSE activity in lignifying tissues of different plant species. Here, we show that down-regulation of CSE in hybrid poplar (Populus tremula × Populus alba) resulted in up to 25% reduced lignin deposition, increased levels of p-hydroxyphenyl units in the lignin polymer, and a relatively higher cellulose content. The transgenic trees were morphologically indistinguishable from the wild type. Ultra-high-performance liquid chromatography-mass spectrometry-based phenolic profiling revealed a reduced abundance of several oligolignols containing guaiacyl and syringyl units and their corresponding hydroxycinnamaldehyde units, in agreement with the reduced flux toward coniferyl and sinapyl alcohol. These trees accumulated the CSE substrate caffeoyl shikimate along with other compounds belonging to the metabolic classes of benzenoids and hydroxycinnamates. Furthermore, the reduced lignin amount combined with the relative increase in cellulose content in the CSE down-regulated lines resulted in up to 62% more glucose released per plant upon limited saccharification when no pretreatment was applied and by up to 86% and 91% when acid and alkaline pretreatments were used. Our results show that CSE is not only important for the lignification process in poplar but is also a promising target for the development of improved lignocellulosic biomass crops for sugar platform biorefineries.


Frontiers in Plant Science | 2016

BdCESA7, BdCESA8, and BdPMT Utility Promoter Constructs for Targeted Expression to Secondary Cell-Wall-Forming Cells of Grasses

Deborah L. Petrik; Cynthia L. Cass; Dharshana Padmakshan; Cliff E. Foster; John P. Vogel; Steven D. Karlen; John Ralph; John C. Sedbrook

Utility vectors with promoters that confer desired spatial and temporal expression patterns are useful tools for studying gene and cellular function and for industrial applications. To target the expression of DNA sequences of interest to cells forming plant secondary cell walls, which generate most of the vegetative biomass, upstream regulatory sequences of the Brachypodium distachyon lignin biosynthetic gene BdPMT and the cellulose synthase genes BdCESA7 and BdCESA8 were isolated and cloned into binary vectors designed for Agrobacterium-mediated transformation of monocots. Expression patterns were assessed using the β-glucuronidase gene GUSPlus and X-glucuronide staining. All three promoters showed strong expression levels in stem tissue at the base of internodes where cell wall deposition is most active, in both vascular bundle xylem vessels and tracheids, and in interfascicular tissues, with expression less pronounced in developmentally older tissues. In leaves, BdCESA7 and BdCESA8 promoter-driven expression was strongest in leaf veins, leaf margins, and trichomes; relatively weaker and patchy expression was observed in the epidermis. BdPMT promoter-driven expression was similar to the BdCESA promoters expression patterns, including strong expression in trichomes. The intensity and extent of GUS staining varied considerably between transgenic lines, suggesting that positional effects influenced promoter activity. Introducing the BdPMT and BdCESA8 Open Reading Frames into BdPMT and BdCESA8 utility promoter binary vectors, respectively, and transforming those constructs into Brachypodium pmt and cesa8 loss-of-function mutants resulted in rescue of the corresponding mutant phenotypes. This work therefore validates the functionality of these utility promoter binary vectors for use in Brachypodium and likely other grass species. The identification, in Bdcesa8-1 T-DNA mutant stems, of an 80% reduction in crystalline cellulose levels confirms that the BdCESA8 gene is a secondary-cell-wall-forming cellulose synthase.


Chemsuschem | 2018

Reductive Cleavage Method for Quantitation of Monolignols and Low-Abundance Monolignol Conjugates

Matt Regner; Allison Bartuce; Dharshana Padmakshan; John Ralph; Steven D. Karlen

Abstract As interest in biomass utilization has grown, the manipulation of lignin biosynthesis has received significant attention, such that recent work has demanded more robust lignin analytical methods. As the derivatization followed by reductive cleavage (DFRC) method is particularly effective for structurally characterizing natively acylated lignins, we used an array of synthetic β‐ether γ‐acylated model compounds to determine theoretical yields for all monolignol conjugates currently known to exist in lignin, and we synthesized a new set of deuterated analogs as internal standards for quantification using GC–MS/MS. Yields of the saturated ester conjugates ranged from 40 to 90 %, and NMR analysis revealed the presence of residual unsaturated conjugates in yields of 20 to 35 %. In contrast to traditional selected‐ion‐monitoring, we demonstrated the superior sensitivity and accuracy of multiple‐reaction‐monitoring detection methods, and further highlighted the inadequacy of traditional standards relative to isotopically labeled analogs.


Plant Physiology | 2018

Commelinid Monocotyledon Lignins are Acylated by p-Coumarate

Steven D. Karlen; Heather C.A. Free; Dharshana Padmakshan; Bronwen G. Smith; John Ralph; Philip J. Harris

p-Coumarate acylates the γ-hydroxyls of lignin side chains, particularly on syringyl units, throughout all orders and various families of commelinid monocotyledons. Commelinid monocotyledons are a monophyletic clade differentiated from other monocotyledons by the presence of cell wall-bound ferulate and p-coumarate. The Poaceae, or grass family, is a member of this group, and most of the p-coumarate in the cell walls of this family acylates lignin. Here, we isolated and examined lignified cell wall preparations from 10 species of commelinid monocotyledons from nine families other than Poaceae, including species from all four commelinid monocotyledon orders (Poales, Zingiberales, Commelinales, and Arecales). We showed that, as in the Poaceae, lignin-linked p-coumarate occurs exclusively on the hydroxyl group on the γ-carbon of lignin unit side chains, mostly on syringyl units. Although the mechanism of acylation has not been studied directly in these species, it is likely to be similar to that in the Poaceae and involve BAHD acyl-coenzyme A:monolignol transferases.


Journal of Agricultural and Food Chemistry | 2018

Structural Characterization of Lignins from Willow Bark and Wood

Jinze Dou; Hoon Kim; Yanding Li; Dharshana Padmakshan; Fengxia Yue; John Ralph; Tapani Vuorinen

Understanding the chemical structure of lignin in willow bark is an indispensable step to design how to separate its fiber bundles. The whole cell wall and enzyme lignin preparations sequentially isolated from ball-milled bark, inner bark, and wood were comparatively investigated by nuclear magnetic resonance (NMR) spectroscopy and three classical degradative methods, i.e., alkaline nitrobenzene oxidation, derivatization followed by reductive cleavage, and analytical thioacidolysis. All results demonstrated that the guaiacyl (G) units were predominant in the willow bark lignin over syringyl (S) and minor p-hydroxyphenyl (H) units. Moreover, the monomer yields and S/G ratio rose progressively from bark to inner bark and wood, indicating that lignin may be more condensed in bark than in other tissues. Additionally, major interunit linkage substructures (β-aryl ethers, phenylcoumarans, and resinols) together with cinnamyl alcohol end groups were relatively quantitated by two-dimensional NMR spectroscopy. Bark and inner bark were rich in pectins and proteins, which were present in large quantities and also in the enzyme lignin preparations.

Collaboration


Dive into the Dharshana Padmakshan's collaboration.

Top Co-Authors

Avatar

John Ralph

Great Lakes Bioenergy Research Center

View shared research outputs
Top Co-Authors

Avatar

Steven D. Karlen

Great Lakes Bioenergy Research Center

View shared research outputs
Top Co-Authors

Avatar

Hoon Kim

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Allison Bartuce

Great Lakes Bioenergy Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanding Li

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Fachuang Lu

South China University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jorge Rencoret

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge