Dhelio Batista Pereira
Oswaldo Cruz Foundation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dhelio Batista Pereira.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Bernardo S. Franklin; Peggy Parroche; Marco Antǒnio Ataíde; Fanny N. Lauw; Catherine Ropert; Rosane B. de Oliveira; Dhelio Batista Pereira; Mauro Shugiro Tada; Paulo Afonso Nogueira; Luiz Hildebrando Pereira da Silva; Harry Björkbacka; Douglas T. Golenbock; Ricardo T. Gazzinelli
Malaria-induced sepsis is associated with an intense proinflammatory cytokinemia for which the underlying mechanisms are poorly understood. It has been demonstrated that experimental infection of humans with Plasmodium falciparum primes Toll-like receptor (TLR)-mediated proinflammatory responses. Nevertheless, the relevance of this phenomenon during natural infection and, more importantly, the mechanisms by which malaria mediates TLR hyperresponsiveness are unclear. Here we show that TLR responses are boosted in febrile patients during natural infection with P. falciparum. Microarray analyses demonstrated that an extraordinary percentage of the up-regulated genes, including genes involving TLR signaling, had sites for IFN-inducible transcription factors. To further define the mechanism involved in malaria-mediated “priming,” we infected mice with Plasmodium chabaudi. The human data were remarkably predictive of what we observed in the rodent malaria model. Malaria-induced priming of TLR responses correlated with increased expression of TLR mRNA in a TLR9-, MyD88-, and IFNγ-dependent manner. Acutely infected WT mice were highly susceptible to LPS-induced lethality while TLR9−/−, IL12−/− and to a greater extent, IFNγ−/− mice were protected. Our data provide unprecedented evidence that TLR9 and MyD88 are essential to initiate IL12 and IFNγ responses and favor host hyperresponsiveness to TLR agonists resulting in overproduction of proinflammatory cytokines and the sepsis-like symptoms of acute malaria.
PLOS Pathogens | 2014
Marco Antǒnio Ataíde; Warrison A. Andrade; Dario S. Zamboni; Donghai Wang; Maria do Carmo Souza; Bernardo S. Franklin; Samir D.A. Elian; Flaviano S. Martins; Dhelio Batista Pereira; George W. Reed; Katherine A. Fitzgerald; Douglas T. Golenbock; Ricardo T. Gazzinelli
Cyclic paroxysm and high fever are hallmarks of malaria and are associated with high levels of pyrogenic cytokines, including IL-1β. In this report, we describe a signature for the expression of inflammasome-related genes and caspase-1 activation in malaria. Indeed, when we infected mice, Plasmodium infection was sufficient to promote MyD88-mediated caspase-1 activation, dependent on IFN-γ-priming and the expression of inflammasome components ASC, P2X7R, NLRP3 and/or NLRP12. Pro-IL-1β expression required a second stimulation with LPS and was also dependent on IFN-γ-priming and functional TNFR1. As a consequence of Plasmodium-induced caspase-1 activation, mice produced extremely high levels of IL-1β upon a second microbial stimulus, and became hypersensitive to septic shock. Therapeutic intervention with IL-1 receptor antagonist prevented bacterial-induced lethality in rodents. Similar to mice, we observed a significantly increased frequency of circulating CD14+CD16−Caspase-1+ and CD14dimCD16+Caspase-1+ monocytes in peripheral blood mononuclear cells from febrile malaria patients. These cells readily produced large amounts of IL-1β after stimulation with LPS. Furthermore, we observed the presence of inflammasome complexes in monocytes from malaria patients containing either NLRP3 or NLRP12 pyroptosomes. We conclude that NLRP12/NLRP3-dependent activation of caspase-1 is likely to be a key event in mediating systemic production of IL-1β and hypersensitivity to secondary bacterial infection during malaria.
PLOS Neglected Tropical Diseases | 2012
Fabiana Maria de Souza Leoratti; Silvia Cellone Trevelin; Fernando Q. Cunha; Bruno C. Rocha; Pedro Augusto Carvalho Costa; Humberto Doriguêtto Gravina; Mauro Shugiro Tada; Dhelio Batista Pereira; Douglas T. Golenbock; Lis Ribeiro do Valle Antonelli; Ricardo T. Gazzinelli
Background The activation of innate immune responses by Plasmodium vivax results in activation of effector cells and an excessive production of pro-inflammatory cytokines that may culminate in deleterious effects. Here, we examined the activation and function of neutrophils during acute episodes of malaria. Materials and Methods Blood samples were collected from P. vivax-infected patients at admission (day 0) and 30–45 days after treatment with chloroquine and primaquine. Expression of activation markers and cytokine levels produced by highly purified monocytes and neutrophils were measured by the Cytometric Bead Assay. Phagocytic activity, superoxide production, chemotaxis and the presence of G protein-coupled receptor (GRK2) were also evaluated in neutrophils from malaria patients. Principal Findings Both monocytes and neutrophils from P. vivax-infected patients were highly activated. While monocytes were found to be the main source of cytokines in response to TLR ligands, neutrophils showed enhanced phagocytic activity and superoxide production. Interestingly, neutrophils from the malaria patients expressed high levels of GRK2, low levels of CXCR2, and displayed impaired chemotaxis towards IL-8 (CXCL8). Conclusion Activated neutrophils from malaria patients are a poor source of pro-inflammatory cytokines and display reduced chemotactic activity, suggesting a possible mechanism for an enhanced susceptibility to secondary bacterial infection during malaria.
PLOS Pathogens | 2014
Lis Ribeiro do Valle Antonelli; Fabiana Maria de Souza Leoratti; Pedro Augusto Carvalho Costa; Bruno C. Rocha; Suelen Q. Diniz; Mauro Shugiro Tada; Dhelio Batista Pereira; Andréa Teixeira-Carvalho; Douglas T. Golenbock; Ricardo Gonçalves; Ricardo T. Gazzinelli
Infection with Plasmodium vivax results in strong activation of monocytes, which are important components of both the systemic inflammatory response and parasite control. The overall goal of this study was to define the role of monocytes during P. vivax malaria. Here, we demonstrate that P. vivax–infected patients display significant increase in circulating monocytes, which were defined as CD14+CD16− (classical), CD14+CD16+ (inflammatory), and CD14loCD16+ (patrolling) cells. While the classical and inflammatory monocytes were found to be the primary source of pro-inflammatory cytokines, the CD16+ cells, in particular the CD14+CD16+ monocytes, expressed the highest levels of activation markers, which included chemokine receptors and adhesion molecules. Morphologically, CD14+ were distinguished from CD14lo monocytes by displaying larger and more active mitochondria. CD14+CD16+ monocytes were more efficient in phagocytizing P. vivax-infected reticulocytes, which induced them to produce high levels of intracellular TNF-α and reactive oxygen species. Importantly, antibodies specific for ICAM-1, PECAM-1 or LFA-1 efficiently blocked the phagocytosis of infected reticulocytes by monocytes. Hence, our results provide key information on the mechanism by which CD14+CD16+ cells control parasite burden, supporting the hypothesis that they play a role in resistance to P. vivax infection.
Cell Reports | 2015
Bruno C. Rocha; Pedro Marques; Fabiana Maria de Souza Leoratti; Caroline Junqueira; Dhelio Batista Pereira; Lis Ribeiro do Valle Antonelli; Gustavo B. Menezes; Douglas T. Golenbock; Ricardo T. Gazzinelli
Neutrophils are the most abundant leukocyte population in the bloodstream, the primary compartment of Plasmodium sp. infection. However, the role of these polymorphonuclear cells in mediating either the resistance or the pathogenesis of malaria is poorly understood. We report that circulating neutrophils from malaria patients are highly activated, as indicated by a strong type I interferon transcriptional signature, increased expression of surface activation markers, enhanced release of reactive oxygen species and myeloperoxidase, and a high frequency of low-density granulocytes. The activation of neutrophils was associated with increased levels of serum alanine and aspartate aminotransferases, indicating liver damage. In a rodent malaria model, we observed intense recruitment of neutrophils to liver sinusoids. Neutrophil migration and IL-1β and chemokine expression as well as liver damage were all dependent on type I interferon signaling. The data suggest that type I interferon signaling has a central role in neutrophil activation and malaria pathogenesis.
The Journal of Infectious Diseases | 2015
Pedro Augusto Carvalho Costa; Fabiana Maria de Souza Leoratti; Maria Marta Figueiredo; Mauro Shugiro Tada; Dhelio Batista Pereira; Caroline Junqueira; Irene S. Soares; Daniel L. Barber; Ricardo T. Gazzinelli; Lis Ribeiro do Valle Antonelli
The function and regulation of the immune response triggered during malaria is complex and poorly understood, and there is a particular paucity of studies conducted in humans infected with Plasmodium vivax. While it has been proposed that T-cell-effector responses are crucial for protection against blood-stage malaria in mice, the mechanisms behind this in humans remain poorly understood. Experimental models of malaria have shown that the regulatory molecules, cytotoxic T-lymphocyte attenuator-4 (CTLA-4), lymphocyte activation gene-3 (LAG-3), and programmed death-1 (PD-1) are involved in the functional impairment of T cells during infection. Our goal was to define the role of these molecules during P. vivax malaria. We demonstrate that infection triggers the expression of regulatory molecules on T cells. The pattern of expression differs in CD4(+) and CD8(+) T cells. Higher frequencies of CD4(+) express more than 1 regulatory molecule compared to CD8(+) T cells. Moreover, lower proportions of CD4(+) T cells coexpress regulatory molecules, but are still able to proliferate. Importantly, simultaneously blockade of the CLTA-4, PD-1, and T-cell immunoglobulin and mucin-3 signaling restores the cytokine production by antigen-specific cells. These data support the hypothesis that upregulation of inhibitory receptors on T cells during P. vivax malaria impairs parasite-specific T-cell effector function.
Malaria Journal | 2014
Anna C. C. Aguiar; Dhelio Batista Pereira; Nayra S. Amaral; Luiz De Marco; Antoniana U. Krettli
BackgroundChloroquine (CQ), a cost effective antimalarial drug with a relatively good safety profile and therapeutic index, is no longer used by itself to treat patients with Plasmodium falciparum due to CQ-resistant strains. P. vivax, representing over 90% of malaria cases in Brazil, despite reported resistance, is treated with CQ as well as with primaquine to block malaria transmission and avoid late P. vivax malaria relapses. Resistance to CQ and other antimalarial drugs influences malaria control, thus monitoring resistance phenotype by parasite genotyping is helpful in endemic areas.MethodsA total of 47 P. vivax and nine P. falciparum fresh isolates were genetically characterized and tested for CQ, mefloquine (MQ) and artesunate (ART) susceptibility in vitro. The genes mdr1 and pfcrt, likely related to CQ resistance, were analyzed in all isolates. Drug susceptibility was determined using short-term parasite cultures of ring stages for 48 to 72 hour and thick blood smears counts. Each parasite isolate was tested with the antimalarials to measure the geometric mean of 50% inhibitory concentration.ResultsThe low numbers of P. falciparum isolates reflect the species prevalence in Brazil; most displayed low sensitivity to CQ (IC50 70 nM). However, CQ resistance was rare among P. vivax isolates (IC50 of 32 nM). The majority of P. vivax and P. falciparum isolates were sensitive to ART and MQ. One hundred percent of P. falciparum isolates carried non-synonymous mutations in the pfmdr1 gene in codons 184, 1042 and 1246, 84% in codons 1034 and none in codon 86, a well-known resistance mutation. For the pfcrt gene, mutations were observed in codons 72 and 76 in all P. falciparum isolates. One P. falciparum isolate from Angola, Africa, showing sensitivity to the antimalarials, presented no mutations. In P. vivax, mutations of pvmdr1 and the multidrug resistance gene 1 marker at codon F976 were absent.ConclusionAll P. falciparum Brazilian isolates showed CQ resistance and presented non-synonymous mutations in pfmdr1 and pfcrt. CQ resistant genotypes were not present among P. vivax isolates and the IC50 values were low in all samples of the Brazilian West Amazon.
Mbio | 2015
Isabella C. Hirako; Carolina Gallego-Marin; Marco Antonio Ataide; Warrison A. Andrade; Humberto Doriguêtto Gravina; Bruno C. Rocha; Rosane B. de Oliveira; Dhelio Batista Pereira; Joseph M. Vinetz; Betty Diamond; Sanjay Ram; Douglas T. Golenbock; Ricardo T. Gazzinelli
ABSTRACT High levels of circulating immunocomplexes (ICs) are found in patients with either infectious or sterile inflammation. We report that patients with either Plasmodium falciparum or Plasmodium vivax malaria have increased levels of circulating anti-DNA antibodies and ICs containing parasite DNA. Upon stimulation with malaria-induced ICs, monocytes express an NF-κB transcriptional signature. The main source of IC-induced proinflammatory cytokines (i.e., tumor necrosis factor alpha [TNF-α] and interleukin-1β [IL-1β])in peripheral blood mononuclear cells from acute malaria patients was found to be a CD14+ CD16 (FcγRIIIA)+ CD64 (FcγRI)high CD32 (FcγRIIB)low monocyte subset. Monocytes from convalescent patients were predominantly of the classical phenotype (CD14+ CD16−) that produces high levels of IL-10 and lower levels of TNF-α and IL-1β in response to ICs. Finally, we report a novel role for the proinflammatory activity of ICs by demonstrating their ability to induce inflammasome assembly and caspase-1 activation in human monocytes. These findings illuminate our understanding of the pathogenic role of ICs and monocyte subsets and may be relevant for future development of immunity-based interventions with broad applications to systemic inflammatory diseases. IMPORTANCE Every year, there are approximately 200 million cases of Plasmodium falciparum and P. vivax malaria, resulting in nearly 1 million deaths, most of which are children. Decades of research on malaria pathogenesis have established that the clinical manifestations are often a consequence of the systemic inflammation elicited by the parasite. Recent studies indicate that parasite DNA is a main proinflammatory component during infection with different Plasmodium species. This finding resembles the mechanism of disease in systemic lupus erythematosus, where host DNA plays a central role in stimulating an inflammatory process and self-damaging reactions. In this study, we disclose the mechanism by which ICs containing Plasmodium DNA activate innate immune cells and consequently stimulate systemic inflammation during acute episodes of malaria. Our results further suggest that Toll-like receptors and inflammasomes have a central role in malaria pathogenesis and provide new insights toward developing novel therapeutic interventions for this devastating disease. Every year, there are approximately 200 million cases of Plasmodium falciparum and P. vivax malaria, resulting in nearly 1 million deaths, most of which are children. Decades of research on malaria pathogenesis have established that the clinical manifestations are often a consequence of the systemic inflammation elicited by the parasite. Recent studies indicate that parasite DNA is a main proinflammatory component during infection with different Plasmodium species. This finding resembles the mechanism of disease in systemic lupus erythematosus, where host DNA plays a central role in stimulating an inflammatory process and self-damaging reactions. In this study, we disclose the mechanism by which ICs containing Plasmodium DNA activate innate immune cells and consequently stimulate systemic inflammation during acute episodes of malaria. Our results further suggest that Toll-like receptors and inflammasomes have a central role in malaria pathogenesis and provide new insights toward developing novel therapeutic interventions for this devastating disease.
BMC Infectious Diseases | 2015
Natália Satchiko Hojo-Souza; Dhelio Batista Pereira; Lívia Silva Araújo Passos; Pedro Henrique Gazzinelli-Guimarães; Mariana Santos Cardoso; Mauro Shugiro Tada; Graziela Maria Zanini; Daniella Castanheira Bartholomeu; Ricardo Toshio Fujiwara; Lilian Lacerda Bueno
BackgroundFor a long time, the role of CD8+ T cells in blood-stage malaria was not considered important because erythrocytes do not express major histocompatibility complex (MHC) class I proteins. While recent evidences suggest that CD8+ T cells may play an important role during the erythrocytic phase of infection by eliminating parasites, CD8+ T cells might also contribute to modulate the host response through production of regulatory cytokines. Thus, the role of CD8+ T cells during blood-stage malaria is unclear. Here, we report the phenotypic profiling of CD8+ T cells subsets from patients with uncomplicated symptomatic P. vivax malaria.MethodsBlood samples were collected from 20 Plasmodium vivax-infected individuals and 12 healthy individuals. Immunophenotyping was conducted by flow cytometry. Plasma levels of IFN-γ, TNF-α and IL-10 were determined by ELISA/CBA. Unpaired t-test or Mann–Whitney test was used depending on the data distribution.ResultsP. vivax-infected subjects had lower percentages and absolute numbers of CD8+CD45RA+ and CD8+CD45RO+ T cells when compared to uninfected individuals (p ≤ 0.0002). A significantly lower absolute number of circulating CD8+CD45+CCR7+ cells (p = 0.002) was observed in P. vivax-infected individuals indicating that infection reduces the number of central memory T cells. Cytokine expression was significantly reduced in the naïve T cells from infected individuals compared with negative controls, as shown by lower numbers of IFN-γ+ (p = 0.001), TNF-α+ (p < 0.0001) and IL-10+ (p < 0.0001) CD8+ T cells. Despite the reduction in the number of CD8+ memory T cells producing IFN-γ (p < 0.0001), P. vivax-infected individuals demonstrated a significant increase in memory CD8+TNF-α+ (p = 0.016) and CD8+IL-10+ (p = 0.004) cells. Positive correlations were observed between absolute numbers of CD8+IL-10+ and numbers of CD8+IFN-γ+ (p < 0.001) and CD8+TNF-α+ T cells (p ≤ 0.0001). Finally, an increase in the plasma levels of TNF-α (p = 0.017) and IL-10 (p = 0.006) and a decrease in the IFN-γ plasma level (p <0.0001) were observed in the P. vivax-infected individuals.ConclusionsP. vivax infection reduces the numbers of different subsets of CD8+ T cells, particularly the memory cells, during blood-stage of infection and enhances the number of CD8+ memory T cells expressing IL-10, which positively correlates with the number of cells expressing TNF-α and IFN-γ.
PLOS Pathogens | 2017
Maria Marta Figueiredo; Pedro Augusto Carvalho Costa; Suelen Queiroz Diniz; Priscilla Miranda Henriques; Flora S. Kano; Mauro Sugiro Tada; Dhelio Batista Pereira; Irene S. Soares; Olindo Assis Martins-Filho; Dragana Jankovic; Ricardo T. Gazzinelli; Lis Ribeiro do Valle Antonelli
Although the importance of humoral immunity to malaria has been established, factors that control antibody production are poorly understood. Follicular helper T cells (Tfh cells) are pivotal for generating high-affinity, long-lived antibody responses. While it has been proposed that expansion of antigen-specific Tfh cells, interleukin (IL) 21 production and robust germinal center formation are associated with protection against malaria in mice, whether Tfh cells are found during Plasmodium vivax (P. vivax) infection and if they play a role during disease remains unknown. Our goal was to define the role of Tfh cells during P. vivax malaria. We demonstrate that P. vivax infection triggers IL-21 production and an increase in Tfh cells (PD-1+ICOS+CXCR5+CD45RO+CD4+CD3+). As expected, FACS-sorted Tfh cells, the primary source of IL-21, induced immunoglobulin production by purified naïve B cells. Furthermore, we found that P. vivax infection alters the B cell compartment and these alterations were dependent on the number of previous infections. First exposure leads to increased proportions of activated and atypical memory B cells and decreased frequencies of classical memory B cells, whereas patients that experienced multiple episodes displayed lower proportions of atypical B cells and higher frequencies of classical memory B cells. Despite the limited sample size, but consistent with the latter finding, the data suggest that patients who had more than five infections harbored more Tfh cells and produce more specific antibodies. P. vivax infection triggers IL-21 production by Tfh that impact B cell responses in humans.