Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dhifaf Sarhan is active.

Publication


Featured researches published by Dhifaf Sarhan.


Frontiers in Immunology | 2015

Natural Killer Cell-Based Therapies Targeting Cancer: Possible Strategies to Gain and Sustain Anti-Tumor Activity

Carin I. M. Dahlberg; Dhifaf Sarhan; Michael Chrobok; Adil D. Duru; Evren Alici

Natural killer (NK) cells were discovered 40 years ago, by their ability to recognize and kill tumor cells without the requirement of prior antigen exposure. Since then, NK cells have been seen as promising agents for cell-based cancer therapies. However, NK cells represent only a minor fraction of the human lymphocyte population. Their skewed phenotype and impaired functionality during cancer progression necessitates the development of clinical protocols to activate and expand to high numbers ex vivo to be able to infuse sufficient numbers of functional NK cells to the cancer patients. Initial NK cell-based clinical trials suggested that NK cell-infusion is safe and feasible with almost no NK cell-related toxicity, including graft-versus-host disease. Complete remission and increased disease-free survival is shown in a small number of patients with hematological malignances. Furthermore, successful adoptive NK cell-based therapies from haploidentical donors have been demonstrated. Disappointingly, only limited anti-tumor effects have been demonstrated following NK cell infusion in patients with solid tumors. While NK cells have great potential in targeting tumor cells, the efficiency of NK cell functions in the tumor microenvironment is yet unclear. The failure of immune surveillance may in part be due to sustained immunological pressure on tumor cells resulting in the development of tumor escape variants that are invisible to the immune system. Alternatively, this could be due to the complex network of immune-suppressive compartments in the tumor microenvironment, including myeloid-derived suppressor cells, tumor-associated macrophages, and regulatory T cells. Although the negative effect of the tumor microenvironment on NK cells can be transiently reverted by ex vivo expansion and long-term activation, the aforementioned NK cell/tumor microenvironment interactions upon reinfusion are not fully elucidated. Within this context, genetic modification of NK cells may provide new possibilities for developing effective cancer immunotherapies by improving NK cell responses and making them less susceptible to the tumor microenvironment. Within this review, we will discuss clinical trials using NK cells with a specific reflection on novel potential strategies, such as genetic modification of NK cells and complementary therapies aimed at improving the clinical outcome of NK cell-based immune therapies.


Cancer Research | 2016

Adaptive NK cells with low TIGIT expression are inherently resistant to myeloid-derived suppressor cells

Dhifaf Sarhan; Frank Cichocki; Bin Zhang; Ashley Yingst; Stephen Spellman; Sarah Cooley; Michael R. Verneris; Bruce R. Blazar; Jeffrey S. Miller

Human cytomegalovirus (CMV)-induced adaptive natural killer (NK) cells display distinct phenotypic and functional characteristics, including properties of immune memory. We hypothesized that these cells may be more resistant to suppression mediated by immunoregulatory cell subsets, making them attractive for use in cancer therapy. Here we report that relative to conventional NK cells, adaptive NK cells express lower levels of the inhibitory receptor T-cell Ig and ITIM domain (TIGIT), which results in resistance to immune suppression mediated by myeloid-derived suppressor cells (MDSC), as derived from cytokine induction in normal blood or patients with myelodysplastic syndrome. In contrast, conventional NK cells were potently suppressed by MDSCs, an effect abrogated completely by TIGIT blockade. Mechanistically, TIGIT signaling in NK cells after MDSC coculture led to a decrease in the phosphorylation of ZAP70/Syk and ERK1/2. These effects were reversed by blocking TIGIT on NK cells or by inhibiting production of reactive oxygen species (ROS) by MDSCs, the latter of which upregulated the TIGIT ligand CD155 on MDSCs. Accordingly, the blunted cytotoxicity of NK cells cocultured with MDSCs against tumor cells could be reversed by blocking TIGIT or ROS production. Overall, our results show how adaptive NK cells arising in response to CMV infection can escape MDSC-mediated suppression, and defined TIGIT antagonists as a novel type of checkpoint inhibitor to enhance NK-cell-mediated responses against cancer and infection. Cancer Res; 76(19); 5696-706. ©2016 AACR.


Cancer Research | 2017

GSK3 inhibition drives maturation of NK cells and enhances their antitumor activity

Frank Cichocki; Bahram Valamehr; Ryan Bjordahl; Bin Zhang; Betsy Rezner; Paul Rogers; Svetlana Gaidarova; Stacey K Moreno; Katie Tuininga; Phillip Dougherty; Valarie McCullar; Peter Howard; Dhifaf Sarhan; Emily Taras; Heinrich Schlums; Stewart E Abbot; Daniel Shoemaker; Yenan T. Bryceson; Bruce R. Blazar; Scott Wolchko; Sarah Cooley; Jeffrey S. Miller

Maturation of human natural killer (NK) cells as defined by accumulation of cell-surface expression of CD57 is associated with increased cytotoxic character and TNF and IFNγ production upon target-cell recognition. Notably, multiple studies point to a unique role for CD57+ NK cells in cancer immunosurveillance, yet there is scant information about how they mature. In this study, we show that pharmacologic inhibition of GSK3 kinase in peripheral blood NK cells expanded ex vivo with IL15 greatly enhances CD57 upregulation and late-stage maturation. GSK3 inhibition elevated the expression of several transcription factors associated with late-stage NK-cell maturation including T-BET, ZEB2, and BLIMP-1 without affecting viability or proliferation. When exposed to human cancer cells, NK cell expanded ex vivo in the presence of a GSK3 inhibitor exhibited significantly higher production of TNF and IFNγ, elevated natural cytotoxicity, and increased antibody-dependent cellular cytotoxicity. In an established mouse xenograft model of ovarian cancer, adoptive transfer of NK cells conditioned in the same way also displayed more robust and durable tumor control. Our findings show how GSK3 kinase inhibition can greatly enhance the mature character of NK cells most desired for effective cancer immunotherapy. Cancer Res; 77(20); 5664-75. ©2017 AACR.


Cancer immunology research | 2018

Adaptive NK Cells Resist Regulatory T-cell Suppression Driven by IL37

Dhifaf Sarhan; Keli L. Hippen; Amanda Lemire; Skyler Hying; Xianghua Luo; Todd Lenvik; Julie Curtsinger; Zachary B. Davis; Bin Zhang; Sarah Cooley; Frank Cichocki; Bruce R. Blazar; Jeffrey S. Miller

Cross-talk between NK cells and Tregs, mediated by IL37 binding its receptor, altered expression of TIM3 and PD-1 on canonical, but not adaptive, NK cells. Increasing adaptive NK cells or blocking Treg suppression mechanisms could enhance immunotherapy. Natural killer (NK) cells are capable of fighting viral infections and cancer. However, these responses are inhibited by immune suppressor cells in the tumor microenvironment. Tumor progression promotes the recruitment and generation of intratumoral regulatory T cells (Treg), associated with a poor prognosis in cancer patients. Here, we show that canonical NK cells are highly susceptible to Treg-mediated suppression, in contrast to highly resistant CD57+ FcϵRγ−NKG2C+ adaptive (CD56+CD3−) NK cells that expand in cytomegalovirus exposed individuals. Specifically, Tregs suppressed canonical but not adaptive NK-cell proliferation, IFNγ production, degranulation, and cytotoxicity. Treg-mediated suppression was associated with canonical NK-cell downregulation of TIM3, a receptor that activates NK-cell IFNγ production upon ligand engagement, and upregulation of the NK-cell inhibitory receptors PD-1 and the IL1 receptor family member, IL1R8 (SIGIRR or TIR8). Treg production of the IL1R8 ligand, IL37, contributed to the phenotypic changes and diminished function in Treg-suppressed canonical NK cells. Blocking PD-1, IL1R8, or IL37 abrogated Treg suppression of canonical NK cells while maintaining NK-cell TIM3 expression. Our data uncover new mechanisms of Treg-mediated suppression of canonical NK cells and identify that adaptive NK cells are inherently resistant to Treg suppression. Strategies to enhance the frequency of adaptive NK cells in the tumor microenvironment or to blunt Treg suppression of canonical NK cells will enhance the efficacy of NK-cell cancer immunotherapy. Cancer Immunol Res; 6(7); 766–75. ©2018 AACR.


Cancer Immunology, Immunotherapy | 2017

Enhanced stimulation of human tumor-specific T cells by dendritic cells matured in the presence of interferon-γ and multiple toll-like receptor agonists

Tanja Lövgren; Dhifaf Sarhan; Iva Truxová; Bhavesh Choudhary; Roeltje Maas; Jeroen Melief; Maria Nyström; Ulrika Edbäck; Renee Vermeij; Gina Scurti; Michael I. Nishimura; Giuseppe Masucci; Alex Karlsson-Parra; Andreas Lundqvist; Lars Adamson; Rolf Kiessling

Dendritic cell (DC) vaccines have been demonstrated to elicit immunological responses in numerous cancer immunotherapy trials. However, long-lasting clinical effects are infrequent. We therefore sought to establish a protocol to generate DC with greater immunostimulatory capacity. Immature DC were generated from healthy donor monocytes by culturing in the presence of IL-4 and GM-CSF and were further differentiated into mature DC by the addition of cocktails containing different cytokines and toll-like receptor (TLR) agonists. Overall, addition of IFNγ and the TLR7/8 agonist R848 during maturation was essential for the production of high levels of IL-12p70 which was further augmented by adding the TLR3 agonist poly I:C. In addition, the DC matured with IFNγ, R848, and poly I:C also induced upregulation of several other pro-inflammatory and Th1-skewing cytokines/chemokines, co-stimulatory receptors, and the chemokine receptor CCR7. For most cytokines and chemokines the production was even further potentiated by addition of the TLR4 agonist LPS. Concurrently, upregulation of the anti-inflammatory cytokine IL-10 was modest. Most importantly, DC matured with IFNγ, R848, and poly I:C had the ability to activate IFNγ production in allogeneic T cells and this was further enhanced by adding LPS to the cocktail. Furthermore, epitope-specific stimulation of TCR-transduced T cells by peptide- or whole tumor lysate-loaded DC was efficiently stimulated only by DC matured in the full maturation cocktail containing IFNγ and the three TLR ligands R848, poly I:C, and LPS. We suggest that this cocktail is used for future clinical trials of anti-cancer DC vaccines.


Scientific Reports | 2016

Independent control of natural killer cell responsiveness and homeostasis at steady-state by CD11c+ dendritic cells

Thuy Thanh Luu; Sridharan Ganesan; Arnika K. Wagner; Dhifaf Sarhan; Stephan Meinke; Natalio Garbi; Günter J. Hämmerling; Evren Alici; Klas Kärre; Benedict J. Chambers; Petter Höglund; Nadir Kadri

During infection and inflammation, dendritic cells (DC) provide priming signals for natural killer (NK) cells via mechanisms distinct from their antigen processing and presentation functions. The influence of DC on resting NK cells, i.e. at steady-state, is less well studied. We here demonstrate that as early as 1 day after DC depletion, NK cells in naïve mice downregulated the NKG2D receptor and showed decreased constitutive phosphorylation of AKT and mTOR. Subsequently, apoptotic NK cells appeared in the spleen concomitant with reduced NK cell numbers. At 4 days after the onset of DC depletion, increased NK cell proliferation was seen in the spleen resulting in an accumulation of Ly49 receptor-negative NK cells. In parallel, NK cell responsiveness to ITAM-mediated triggering and cytokine stimulation dropped across maturation stages, suggestive of a functional deficiency independent from the homeostatic effect. A role for IL-15 in maintaining NK cell function was supported by a gene signature analysis of NK cell from DC-depleted mice as well as by in vivo DC transfer experiments. We propose that DC, by means of IL-15 transpresentation, are required to maintain not only homeostasis, but also function, at steady-state. These processes appear to be regulated independently from each other.


Blood Advances | 2018

161533 TriKE stimulates NK-cell function to overcome myeloid-derived suppressor cells in MDS

Dhifaf Sarhan; Ludwig Brandt; Martin Felices; Karolin Guldevall; Todd Lenvik; Peter Hinderlie; Julie Curtsinger; Erica D. Warlick; Stephen Spellman; Bruce R. Blazar; Daniel J. Weisdorf; Sarah Cooley; Daniel A. Vallera; Björn Önfelt; Jeffrey S. Miller

Myelodysplastic syndrome (MDS) is a clonal heterogeneous stem cell disorder driven by multiple genetic and epigenetic alterations resulting in ineffective hematopoiesis. MDS has a high frequency of immune suppressors, including myeloid-derived suppressor cells (MDSCs), that collectively result in a poor immune response. MDSCs in MDS patients express CD155 that ligates the T-cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) and delivers an inhibitory signal to natural killer (NK) cells. To mediate a productive immune response against MDS, negative regulatory checkpoints, like TIGIT, expressed on MDS NK cells must be overcome. NK cells can be directed to lyse MDS cells by bispecific killer engagers (BiKEs) that ligate CD16 on NK cells and CD33 on MDS cells. However, such CD16 × CD33 (1633) BiKEs do not induce the proliferative response in MDS NK cells needed to sustain their function. Here, we show that the addition of an NK stimulatory cytokine, interleukin-15 (IL-15), into the BiKE platform leads to productive IL-15 signaling without TIGIT upregulation on NK cells from MDS patients. Lower TIGIT expression allowed NK cells to resist MDSC inhibition. When compared with 1633 BiKE, 161533 trispecific killer engager (TriKE)-treated NK cells demonstrated superior killing kinetics associated with increased STAT5 phosphorylation. Furthermore, 161533 TriKE-treated MDS NK cells had higher proliferation and enhanced NK-cell function than 1633 BiKE-treated cells without the IL-15 linker. Collectively, our data demonstrate novel characteristics of the 161533 TriKE that support its application as an immunotherapeutic agent for MDS patients.


Biology of Blood and Marrow Transplantation | 2018

Early Reconstitution of NK and γδ T Cells and Its Implication for the Design of Post-Transplant Immunotherapy

Moniek A de Witte; Dhifaf Sarhan; Zachary B. Davis; Martin Felices; Daniel A. Vallera; Peter Hinderlie; Julie Curtsinger; Sarah Cooley; John E. Wagner; Jürgen Kuball; Jeffrey S. Miller

Relapse is the most frequent cause of treatment failure after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Natural killer (NK) cells and γδ T cells reconstitute early after allo-HSCT, contribute to tumor immunosurveillance via major histocompatibility complex-independent mechanisms and do not induce graft-versus-host disease. Here we performed a quantitative and qualitative analysis of the NK and γδ T cell repertoire in healthy individuals, recipients of HLA-matched sibling or unrelated donor allo-HSCT (MSD/MUD-HSCT) and umbilical cord blood-HSCT (UCB-HSCT). NK cells are present at high frequencies in all allo-HSCT recipients. Immune reconstitution (IR) of vδ2+ cells depended on stem cell source. In MSD/MUD-HSCT recipients, vδ2+ comprise up to 8% of the total lymphocyte pool, whereas vδ2+ T cells are barely detectable in UCB-HSCT recipients. Vδ1+ IR was driven by CMV reactivation and was comparable between MSD/MUD-HSCT and UCB-HSCT. Strategies to augment NK cell mediated tumor responses, similar to IL-15 and antibodies, also induced vδ2+ T cell responses against a variety of different tumor targets. Vδ1+ γδ T cells were induced less by these same stimuli. We also identified elevated expression of the checkpoint inhibitory molecule TIGIT (T cell Ig and ITIM domain), which is also observed on tumor-infiltrating lymphocytes and epidermal γδ T cells. Collectively, these data show multiple strategies that can result in a synergized NK and γδ T cell antitumor response. In the light of recent developments of low-toxicity allo-HSCT platforms, these interventions may contribute to the prevention of early relapse.


Cancer Research | 2017

Abstract 3752: FATE-NK100: A novel NK cell-mediated cancer therapy

Frank Cichocki; Barham Valamehr; Ryan Bjordahl; Bin Zhang; Dhifaf Sarhan; Sarah Cooley; Bruce R. Blazar; Betsy Rezner; Paul Rogers; Chad E. Green; Stewart Abbot; Daniel Shoemaker; Scott Wolchko; Jeffrey S. Miller

Natural killer (NK) cells are innate lymphoid cells that mediate immune responses against pathogens and cancer. Human NK cells are distinguished by the surface phenotype CD3-CD56+, and maturation of CD56dim NK cells is associated with acquisition of CD57. Rather than being an immunosenescence marker, CD57 acquisition represents a shift toward greater effector function, including increased CD16 signaling (Fc receptor responsible for triggering antibody-dependent cellular cytotoxicity), more potent cytotoxicity and enhanced inflammatory cytokine production after target cell engagement. The main challenge in enriching for CD57+ NK cells using current ex vivo expansion protocols is that interleukin (IL)-15, the cytokine that drives NK cell proliferation and is critical for NK cell survival, preferentially expands less mature NK subsets that fail to terminally differentiate in culture. Our group has developed a novel NK cell expansion method that overcomes this barrier. Peripheral blood mononuclear cells from are depleted of CD3+ T cells and CD19+ B cells and cultured for 7 days with IL-15 and a small molecule inhibitor of glycogen synthase kinase 3-beta (GSK3β), a multifunctional kinase downstream of the PI(3)K pathway. Compared to vehicle control, addition of the GSK3β inhibitor led to a substantial increase (2.2-fold ± 0.19, n=23, p We have scaled our process to manufacture a GMP product (referred to as FATE-NK100) for clinical use. Using an apheresis product from a donor containing 21.5 x 108 CD57+ NK cells, we achieved 6.4-fold NK cell expansion resulting in a final GMP-grade product containing 158 x 108 CD57+ NK cells. The cytotoxicity of these ex vivo expanded NK cells in response to SKOV-3 cells is superior to that of CD3/CD19-depleted haploidentical NK cells activated overnight with either IL-2 or IL-15 (representing the NK products used in current clinical trials). These data have been presented to the FDA in preparation for a clinical trial of FATE-NK100 in lymphodepleted patients with advanced AML anticipated for Q1 2017. Citation Format: Frank Cichocki, Barham Valamehr, Ryan Bjordahl, Bin Zhang, Dhifaf Sarhan, Sarah Cooley, Bruce Blazar, Betsy Rezner, Paul Rogers, Chad Green, Stewart Abbot, Daniel Shoemaker, Scott Wolchko, Jeffrey S. Miller. FATE-NK100: A novel NK cell-mediated cancer therapy [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 3752. doi:10.1158/1538-7445.AM2017-3752


Cancer Immunology, Immunotherapy | 2018

Haploidentical natural killer cells induce remissions in non-Hodgkin lymphoma patients with low levels of immune-suppressor cells

Veronika Bachanova; Dhifaf Sarhan; Todd E. DeFor; Sarah Cooley; Angela Panoskaltsis-Mortari; Bruce R. Blazar; Julie Curtsinger; Linda J. Burns; Daniel J. Weisdorf; Jeffrey S. Miller

Collaboration


Dive into the Dhifaf Sarhan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Cooley

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Zhang

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge