Dhiman Sarkar
Council of Scientific and Industrial Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dhiman Sarkar.
MedChemComm | 2015
Mubarak H. Shaikh; Dnyaneshwar D. Subhedar; Laxman Nawale; Dhiman Sarkar; Firoz A. Kalam Khan; Jaiprakash N. Sangshetti; Bapurao B. Shingate
Searching for new active molecules against Mycobacterium tuberculosis (MTB) H37Ra, a small focused library of 1,2,3-triazoles has been efficiently prepared via a click chemistry approach. The newly synthesized compounds were tested against drug-sensitive MTB. Several derivatives were found to be promising inhibitors of MTB characterized by lower MIC values (5.8–29.9 μg mL−1). Among all the synthesized 31 compounds, 15e was the most active compound against MTB. Based on the results from the anti-tubercular activity, SAR for the synthesized series has been developed. The active compounds from the anti-tubercular study were further tested for anti-proliferative activity against THP-1, A549 and PANC-1 cell lines using MTT assay and showed no significant cytotoxic activity against these three cell lines except THP-1 at the maximum concentration evaluated. Further, the synthesized compounds were found to have potential antioxidant activities with an IC50 range of 10.1–37.3 μg mL−1. The molecular docking study of the synthesized compounds was performed against the DprE1 enzyme of MTB to understand the binding interactions. Moreover, the synthesized compounds were also analysed for ADME properties and all the experimental results promote us to consider this series as a starting point for the development of novel and more potent anti-tubercular agents in the future.
International Journal of Antimicrobial Agents | 2008
Arshad Khan; Sampa Sarkar; Dhiman Sarkar
This study evaluated the antituberculous potential of 2-nitroimidazole under in vitro conditions. Minimal bactericidal concentrations of the compound against actively replicating Mycobacterium bovis BCG and Mycobacterium tuberculosis H37Ra were found to be 0.226 microg/mL and 0.556 microg/mL in enriched and minimal medium, respectively. Minimal inhibitory concentrations were >100 times lower than reported antituberculous nitroimidazoles such as nitrofurantoin and furaltadone, indicating the greater potential of 2-nitroimidazole. No discernible effect of 2-nitroimidazole was seen on saprophytic Mycobacterium smegmatis and the representative bacterial strain Escherichia coli DH5alpha, indicating the specificity of the molecule against tuberculous mycobacteria. The compound was also found to be effective against M. tuberculosis in the intracellular environment of the human monocytic cell line THP-1, with a reduction in viability of bacilli by 2.5 log after 144 h of incubation at a concentration of 0.113 microg/mL. A five-fold higher concentration (0.565 microg/mL) of 2-nitroimidazole sterilised the macrophages of intracellular pathogens within 192 h, without affecting the host. However, 2-nitroimidazole was unable to affect significantly the viability of dormant non-replicating bacilli of M. bovis BCG and M. tuberculosis in Waynes in vitro model. Overall, the results indicate that 2-nitroimidazole is a potent antituberculous agent active against the organisms active replicating stage, with promising intracellular efficacy as well.
International Journal of Antimicrobial Agents | 2015
Richa Singh; Laxman Nawale; Manisha Arkile; Utkarsha U. Shedbalkar; Sweety A. Wadhwani; Dhiman Sarkar; Balu A. Chopade
Resistance among mycobacteria leading to multidrug-resistant and extensively drug-resistant tuberculosis is a major threat. However, nanotechnology has provided new insights in drug delivery and medicine development. This is the first comparative report to determine the activity of chemically and biologically synthesised silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) against mycobacteria. Screening data revealed the high mycobactericidal efficiency of AgNPs, with minimum inhibitory concentrations (MICs) of <3μg/mL, whereas no such activity was exhibited by AuNPs at concentrations up to 100μg/mL. Moreover, in vitro and ex vivo THP-1 infection model assays showed greater efficacy of chemical AgNPs compared with biogenic AgNPs to inhibit active and dormant stage mycobacterial growth. Up to 40% cytotoxicity against human cell lines was observed at a AgNP concentration of 10× MIC (30μg/mL) after 48h. AgNPs were shown to have more specificity towards mycobacteria than towards other Gram-negative and Gram-positive pathogenic bacteria. The selectivity index was found to be in the range of 11-23, indicating the potential of these nanoparticles for use in developing new therapeutics for tuberculosis.
Plant Cell Tissue and Organ Culture | 2010
Jagesh Kumar Tiwari; Poonam; Dhiman Sarkar; Sk. Pandey; Jai Gopal; S. Raj Kumar
Interspecific potato somatic hybrids between Solanum tuberosum L. (di)haploid C-13 and 1 endosperm balance number non-tuberous wild species S. etuberosum Lindl. were produced by protoplasts electrofusion. The objective was to transfer virus resistance from this wild species into the cultivated potatoes. Post-fusion products were cultured in VKM medium followed by regeneration of calli in MS13 K medium at 20°C under a 16-h photoperiod, and regenerants were multiplied on MS medium. Twenty-one somatic hybrids were confirmed by RAPD, SSR and cytoplasm (chloroplast/mitochondria) type analysis possessing species-specific diagnostic bands of corresponding parents. Tetraploid nature of these somatic hybrids was determined through flow cytometry analysis. Somatic hybrids showed intermediate phenotypes (plant, leaves and floral morphology) to their parents in glass-house grown plants. All the somatic hybrids were male-fertile. ELISA assay of somatic hybrids after artificial inoculation of Potato virus Y (PVY) infection reveals high PVY resistance.
Bioorganic & Medicinal Chemistry Letters | 2016
Mubarak H. Shaikh; Dnyaneshwar D. Subhedar; Manisha Arkile; Vijay M. Khedkar; Nandadeep J. Jadhav; Dhiman Sarkar; Bapurao B. Shingate
In search of new active molecules against Mycobacterium tuberculosis (MTB) H37Ra and M. bovis BCG, a small focused library of benzothiazinone based 1,2,3-triazoles has been efficiently prepared via click chemistry approach. Several derivatives were found to be promising inhibitors of MTB and M. bovis BCG characterized by lower MIC values (27.34-29.37μg/mL). Among all the synthesized compounds, 6c and 6e is the most active compound against MTB and M. bovis BCG. The compounds were further tested for anti-proliferative activity against HeLa, A549 and A431 cell lines using MTT assay and showed no significant cytotoxic activity at the maximum concentration evaluated. Further, the synthesized compounds were found to have potential antioxidant activity with IC50 range=14.14-47.11μg/mL. Furthermore, to rationalize the observed biological activity data, the molecular docking study also been carried out against a potential target MTB DprE1, which revealed a significant correlation between the binding score and biological activity for these compounds. The results of the in vitro and in silico study suggest that the triazole incorporated benzothiazinone may possess the ideal structural requirements for further development of novel therapeutic agents.
Journal of Biomolecular Screening | 2012
Sampa Sarkar; Dhiman Sarkar
The development of a macrophage-based, antitubercular high-throughput screening system could expedite discovery programs for identifying novel inhibitors. In this study, the kinetics of nitrate reduction (NR) by Mycobacterium tuberculosis during growth in Thp1 macrophages was found to be almost parallel to viable bacilli count. NR in the culture medium containing 50 mM of nitrate was found to be optimum on the fifth day after infection with M. tuberculosis. The signal-to-noise (S/N) ratio and Z-factor obtained from this macrophage-based assay were 5.4 and 0.965, respectively, which confirms the robustness of the assay protocol. The protocol was further validated by using standard antitubercular inhibitors such as rifampicin, isoniazid, streptomycin, ethambutol, and pyrazinamide, added at their IC90 value, on the day of infection. These inhibitors were not able to kill the bacilli when added to the culture on the fifth day after infection. Interestingly, pentachlorophenol and rifampicin killed the bacilli immediately after addition on the fifth day of infection. Altogether, this assay protocol using M. tuberculosis–infected Thp-1 macrophages provides a novel, cost-efficient, robust, and easy-to-perform screening platform for the identification of both active and hypoxic stage-specific inhibitors against tuberculosis.
Journal of Bacteriology | 2013
Shamim Akhtar; Arshad Khan; Charles D. Sohaskey; Chinnaswamy Jagannath; Dhiman Sarkar
Mycobacterium tuberculosis is one of the strongest reducers of nitrate among all mycobacteria. Reduction of nitrate to nitrite, mediated by nitrate reductase (NarGHJI) of M. tuberculosis, is induced during the dormant stage, and the enzyme has a respiratory function in the absence of oxygen. Nitrite reductase (NirBD) is also functional during aerobic growth when nitrite is the sole nitrogen source. However, the role of NirBD-mediated nitrite reduction during the dormancy is not yet characterized. Here, we analyzed nitrite reduction during aerobic growth as well as in a hypoxic dormancy model of M. tuberculosis in vitro. When nitrite was used as the sole nitrogen source in the medium, the organism grew and the reduction of nitrite was evident in both hypoxic and aerobic cultures of M. tuberculosis. Remarkably, the hypoxic culture of M. tuberculosis, compared to the aerobic culture, showed 32- and 4-fold-increased expression of nitrite reductase (NirBD) at the transcription and protein levels, respectively. More importantly, a nirBD mutant of M. tuberculosis was unable to reduce nitrite and compared to the wild-type (WT) strain had a >2-log reduction in viability after 240 h in the Wayne model of hypoxic dormancy. Dependence of M. tuberculosis on nitrite reductase (NirBD) was also seen in a human macrophage-based dormancy model where the nirBD mutant was impaired for survival compared to the WT strain. Overall, the increased expression and essentiality of nitrite reductase in the in vitro dormancy models suggested that NirBD-mediated nitrite reduction could be critical during the persistent stage of M. tuberculosis.
Bioorganic & Medicinal Chemistry Letters | 2016
Dnyaneshwar D. Subhedar; Mubarak H. Shaikh; Manisha Arkile; Amar Yeware; Dhiman Sarkar; Bapurao B. Shingate
We have developed, highly efficient, one-pot, solvent-free, [Et3NH][HSO4] catalyzed multicomponent reaction protocol for the synthesis of 1,3-thiazolidin-4-ones in excellent yields. For the first time, the 1,3-thiazolidin-4-ones were evaluated in vitro for their antimycobacterial activity against Mycobacterium tuberculosis dormant MTB H37Ra and Mycobacterium bovis BCG strains. Among the synthesized basic 1,3-thiazolidin-4-ones, particularly the compounds 4c, 4d, 4e, 4f, 4h, 4i and 4j displays promising antitubercular activity along with no significant cytotoxicity against the cell lines MCF-7, A549 and HCT-116.
Bioorganic & Medicinal Chemistry Letters | 2016
N. C. Desai; Hardik Somani; Amit Trivedi; Kandarp Bhatt; Laxman Nawale; Vijay M. Khedkar; Prakash C. Jha; Dhiman Sarkar
A series of indole and pyridine based 1,3,4-oxadiazole derivatives 5a-t were synthesized and evaluated for their in vitro antitubercular activity against Mycobacterium tuberculosis H37Ra (MTB) and Mycobacterium bovis BCG both in active and dormant state. Compounds 5b, 5e, 5g and 5q exhibited very good antitubercular activity. All the newly synthesized compounds 5a-t were further evaluated for anti-proliferative activity against HeLa, A549 and PANC-1 cell lines using modified MTT assay and found to be noncytotoxic. On the basis of cytotoxicity and MIC values against Mycobacterium bovis BCG, selectivity index (SI) of most active compounds 5b, 5e, 5g and 5q was calculated (SI=GI50/MIC) in active and dormant state. Compounds 5b, 5e and 5g demonstrated SI values ⩾10 against all three cell lines and were found to safe for advance screening. Compounds 5a-t were further screened for their antibacterial activity against four bacteria strains to assess their selectivity towards MTB. In addition, the molecular docking studies revealed the binding modes of these compounds in active site of enoyl reductase (InhA), which in turn helped to establish a structural basis of inhibition of mycobacteria. The potency, low cytotoxicity and selectivity of these compounds make them valid lead compounds for further optimization.
Journal of Natural Products | 2013
Roshan R. Kulkarni; Ketaki Dilip Shurpali; Vedavati G. Puranik; Dhiman Sarkar; Swati P. Joshi
Phytochemical investigation of the acetone extract of the aerial parts of Leucas stelligera afforded four new compounds (1-4) belonging to the labdane diterpene series as well as two known flavones, velutin (5) and chrysoeriol (6). Structure elucidation of the new compounds was carried out using 1D and 2D NMR spectroscopic data and single-crystal X-ray crystallography of compound 1. Compounds 1-4 exhibited selective antimycobacterial activity against Mycobacterium tuberculosis with IC50 values in the range 5.02-9.80 μg/mL.