Dhuha Al-Sajee
McMaster University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dhuha Al-Sajee.
Frontiers in Physiology | 2013
Donna M. D'Souza; Dhuha Al-Sajee; Thomas J. Hawke
Diabetes mellitus is defined as a group of metabolic diseases that are associated with the presence of a hyperglycemic state due to impairments in insulin release and/or function. While the development of each form of diabetes (Type 1 or Type 2) drastically differs, resultant pathologies often overlap. In each diabetic condition, a failure to maintain healthy muscle is often observed, and is termed diabetic myopathy. This significant, but often overlooked, complication is believed to contribute to the progression of additional diabetic complications due to the vital importance of skeletal muscle for our physical and metabolic well-being. While studies have investigated the link between changes to skeletal muscle metabolic health following diabetes mellitus onset (particularly Type 2 diabetes mellitus), few have examined the negative impact of diabetes mellitus on the growth and reparative capacities of skeletal muscle that often coincides with disease development. Importantly, evidence is accumulating that the muscle progenitor cell population (particularly the muscle satellite cell population) is also negatively affected by the diabetic environment, and as such, likely contributes to the declining skeletal muscle health observed in diabetes mellitus. In this review, we summarize the current knowledge surrounding the influence of diabetes mellitus on skeletal muscle growth and repair, with a particular emphasis on the impact of diabetes mellitus on skeletal muscle progenitor cell populations.
PLOS ONE | 2013
Karin E. Trajcevski; Hayley M. O’Neill; David C. Wang; Melissa M. Thomas; Dhuha Al-Sajee; Gregory R. Steinberg; Rolando B. Ceddia; Thomas J. Hawke
Background Diet-induced obesity is a rising health concern which can lead to the development of glucose intolerance and muscle insulin resistance and, ultimately, type II diabetes mellitus. This research investigates the associations between glucose intolerance or muscle insulin resistance and tissue specific changes during the progression of diet-induced obesity. Methodology C57BL/6J mice were fed a normal or high-fat diet (HFD; 60% kcal fat) for 3 or 8 weeks. Disease progression was monitored by measurements of body/tissue mass changes, glucose and insulin tolerance tests, and ex vivo glucose uptake in intact muscles. Lipid metabolism was analyzed using metabolic chambers and ex vivo palmitate assays in intact muscles. Skeletal muscle, liver and adipose tissues were analyzed for changes in inflammatory gene expression. Plasma was analyzed for insulin levels and inflammatory proteins. Histological techniques were used on muscle and liver cryosections to assess metabolic and morphological changes. Principal Findings/Conclusions A rapid shift in whole body metabolism towards lipids was observed with HFD. Following 3 weeks of HFD, elevated total lipid oxidation and an oxidative fiber type shift had occurred in the skeletal muscle, which we propose was responsible for delaying intramyocellular lipid accumulation and maintaining muscle’s insulin sensitivity. Glucose intolerance was present after three weeks of HFD and was associated with an enlarged adipose tissue depot, adipose tissue inflammation and excess hepatic lipids, but not hepatic inflammation. Furthermore, HFD did not significantly increase systemic or muscle inflammation after 3 or 8 weeks of HFD suggesting that early diet-induced obesity does not cause inflammation throughout the whole body. Overall these findings indicate skeletal muscle did not contribute to the development of HFD-induced impairments in whole-body glucose tolerance following 3 weeks of HFD.
PLOS ONE | 2013
Matthew P. Krause; Dhuha Al-Sajee; Donna M. D’Souza; Irena A. Rebalka; Jasmin Moradi; Michael C. Riddell; Thomas J. Hawke
Background Systemic elevations in PAI-1 suppress the fibrinolytic pathway leading to poor collagen remodelling and delayed regeneration of tibialis anterior (TA) muscles in type-1 diabetic Akita mice. However, how impaired collagen remodelling was specifically attenuating regeneration in Akita mice remained unknown. Furthermore, given intrinsic differences between muscle groups, it was unclear if the reparative responses between muscle groups were different. Principal Findings Here we reveal that diabetic Akita muscles display differential regenerative responses with the TA and gastrocnemius muscles exhibiting reduced regenerating myofiber area compared to wild-type mice, while soleus muscles displayed no difference between animal groups following injury. Collagen levels in TA and gastrocnemius, but not soleus, were significantly increased post-injury versus controls. At 5 days post-injury, when degenerating/necrotic regions were present in both animal groups, Akita TA and gastrocnemius muscles displayed reduced macrophage and satellite cell infiltration and poor myofiber formation. By 10 days post-injury, necrotic regions were absent in wild-type TA but persisted in Akita TA. In contrast, Akita soleus exhibited no impairment in any of these measures compared to wild-type soleus. In an effort to define how impaired collagen turnover was attenuating regeneration in Akita TA, a PAI-1 inhibitor (PAI-039) was orally administered to Akita mice following cardiotoxin injury. PAI-039 administration promoted macrophage and satellite cell infiltration into necrotic areas of the TA and gastrocnemius. Importantly, soleus muscles exhibit the highest inducible expression of MMP-9 following injury, providing a mechanism for normative collagen degradation and injury recovery in this muscle despite systemically elevated PAI-1. Conclusions Our findings suggest the mechanism underlying how impaired collagen remodelling in type-1 diabetes results in delayed regeneration is an impairment in macrophage infiltration and satellite cell recruitment to degenerating areas; a phenomena that occurs differentially between muscle groups.
Physiological Reports | 2015
Donna M. D'Souza; Karin E. Trajcevski; Dhuha Al-Sajee; David C. Wang; Melissa M. Thomas; Judy E. Anderson; Thomas J. Hawke
A healthy skeletal muscle mass is essential in attenuating the complications of obesity. Importantly, healthy muscle function is maintained through adequate repair following overuse and injury. The purpose of this study was to investigate the impact of diet‐induced obesity (DIO) on skeletal muscle repair and the functionality of the muscle satellite cell (SC) population. Male C57BL/6J mice were fed a standard chow or high‐fat diet (60% kcal fat; DIO) for 8 weeks. Muscles from DIO mice subjected to cardiotoxin injury displayed attenuated muscle regeneration, as indicated by prolonged necrosis, delayed expression of MyoD and Myogenin, elevated collagen content, and persistent embryonic myosin heavy chain expression. While no significant differences in SC content were observed, SCs from DIO muscles did not activate normally nor did they respond to exogenous hepatocyte growth factor (HGF) despite similar receptor (cMet) density. Furthermore, HGF release from crushed muscle was significantly less than that from muscles of chow fed mice. This study demonstrates that deficits in muscle repair are present in DIO, and the impairments in the functionality of the muscle SC population as a result of altered HGF/c‐met signaling are contributors to the delayed regeneration.
American Journal of Pathology | 2013
Mats I. Nilsson; Aliyah A. Nissar; Dhuha Al-Sajee; Mark A. Tarnopolsky; Gianni Parise; Boleslav Lach; Dieter O. Fürst; Peter F.M. van der Ven; Rudolf A. Kley; Thomas J. Hawke
Xin is a striated muscle-specific protein that is localized to the myotendinous junction in skeletal muscle. However, in injured mouse muscle, Xin expression is up-regulated and observed throughout skeletal muscle fibers and within satellite cells. In this study, Xin was analyzed by immunofluorescent staining in skeletal muscle samples from 47 subjects with various forms of myopathy, including muscular dystrophies, inflammatory myopathies, mitochondrial/metabolic myopathy, and endocrine myopathy. Results indicate that Xin immunoreactivity is positively and significantly correlated (rs = 0.6175, P = <0.0001) with the severity of muscle damage, regardless of myopathy type. Other muscle damage measures also showed a correlation with severity [Xin actin-binding repeat-containing 2 (rs = -0.7108, P = 0.0006) and collagen (rs = 0.4683, P = 0.0783)]. However, because only Xin lacked immunoreactivity within the healthy muscle belly, any detectable immunoreactivity for Xin was indicative of muscle damage. We also investigated the expression of Xin within the skeletal muscle of healthy individuals subjected to damaging eccentric exercise. Consistent with our previously mentioned results, Xin immunoreactivity was increased 24 hours after exercise in damaged muscle fibers and within the activated muscle satellite cells. Taken together, these data demonstrate Xin as a useful biomarker of muscle damage in healthy individuals and in patients with myopathy. The strong correlation between the degree of muscle damage and Xin immunoreactivity suggests that Xin may be a suitable outcome measure to evaluate disease progression and treatment effects in clinical trials.
Diabetes | 2016
D'Souza Dm; Zhou S; Irena A. Rebalka; MacDonald B; Moradi J; Krause Mp; Dhuha Al-Sajee; Punthakee Z; Mark A. Tarnopolsky; Thomas J. Hawke
Type 1 diabetes (T1D) negatively influences skeletal muscle health; however, its effect on muscle satellite cells (SCs) remains largely unknown. SCs from samples from rodents (Akita) and human subjects with T1D were examined to discern differences in SC density and functionality compared with samples from their respective control subjects. Examination of the Notch pathway was undertaken to investigate its role in changes to SC functionality. Compared with controls, Akita mice demonstrated increased muscle damage after eccentric exercise along with a decline in SC density and myogenic capacity. Quantification of components of the Notch signaling pathway revealed a persistent activation of Notch signaling in Akita SCs, which could be reversed with the Notch inhibitor DAPT. Similar to Akita samples, skeletal muscle from human subjects with T1D displayed a significant reduction in SC content, and the Notch ligand, DLL1, was significantly increased compared with control subjects, supporting the dysregulated Notch pathway observed in Akita muscles. These data indicate that persistent activation in Notch signaling impairs SC functionality in the T1D muscle, resulting in a decline in SC content. Given the vital role played by the SC in muscle growth and maintenance, these findings suggest that impairments in SC capacities play a primary role in the skeletal muscle myopathy that characterizes T1D.
American Journal of Respiratory and Critical Care Medicine | 2016
Amani El-Gammal; John Paul Oliveria; Karen Howie; Richard M. Watson; Patrick D. Mitchell; Ruchong Chen; Adrian J. Baatjes; Steven G. Smith; Dhuha Al-Sajee; Thomas J. Hawke; Kieran J. Killian; Gail M. Gauvreau; Paul M. O'Byrne
RATIONALE Dendritic cells (DCs) are antigen-presenting cells essential for the initiation of T-cell responses. Allergen inhalation increases the number of airway DCs and the release of epithelial-derived cytokines, such as IL-33 and thymic stromal lymphopoietin (TSLP), that activate DCs. OBJECTIVES To examine the effects of inhaled allergen on bone marrow production of DCs and their trafficking into the airways in subjects with allergic asthma, and to examine IL-33 and TSPL receptor expression on DCs. METHODS Bone marrow, peripheral blood, bronchoalveolar lavage (BAL), and bronchial biopsies were obtained before and after inhalation of diluent and allergen from subjects with asthma that develop allergen-induced dual responses. Classical DCs (cDCs) were cultured from bone marrow CD34(+) cells. cDC1s, cDC2s, and plasmacytoid DCs were measured in bone marrow aspirates, peripheral blood, and BAL by flow cytometry, and cDCs were quantified in bronchial biopsies by immunofluorescence staining. MEASUREMENTS AND MAIN RESULTS Inhaled allergen increased the number of cDCs grown from bone marrow progenitors, and cDCs and plasmacytoid DCs in bone marrow aspirates 24 hours after allergen. Allergen also increased the expression of the TSLP receptor, but not the IL-33 receptor, on bone marrow DCs. Finally, inhaled allergen increased the percentage of cDC1s and cDC2s in BAL but only cDC2s in bronchial tissues. CONCLUSIONS Inhaled allergen increases DCs in bone marrow and trafficking of DCs into the airway, which is associated with the development airway inflammation in subjects with allergic asthma. Inhaled allergen challenge also increases expression of TSLP, but not IL-33, receptors on bone marrow DCs.
Acta Physiologica | 2015
Dhuha Al-Sajee; Aliyah A. Nissar; S. K. Coleman; I. A. Rebalka; A. Chiang; R. Wathra; P.F.M. van der Ven; Zacharias Orfanos; Thomas J. Hawke
Xin is an F‐actin‐binding protein expressed during development of cardiac and skeletal muscle. We used Xin‐/‐ mice to determine the impact of Xin deficiency on different aspects of skeletal muscle health, including functionality and regeneration.
Current Opinion in Pulmonary Medicine | 2018
Dhuha Al-Sajee; John Paul Oliveria; Roma Sehmi; Gail M. Gauvreau
Purpose of review Recent studies have highlighted the role of alarmins in asthma pathophysiology and tested the roles of these cytokines in asthmatic patients. This review will discuss the recent advances in the role of alarmins in asthma and the potential of future targeted therapies in asthma. Recent findings Epithelial-derived cytokines can be released upon exposure to external stimuli, causing damage to the epithelial barrier and resulting in tissue inflammation. Of these cytokines, IL-25, IL-33 and thymic stromal lymphopoeitin (TSLP), have been associated with asthma. These alarmins are all not only overexpressed in asthmatic airways, particularly in airway epithelial cells, but also in other structural and immune cells. Furthermore, all three alarmins drive type-2 pro-inflammatory responses in several immune cells that have been identified as key players in the pathogenesis of asthma, including innate lymphoid type-2 cells. Clinical trials testing therapeutics that block pathways of the alarmins are in progress. Summary To-date, only TSLP blockade has been reported in human clinical trials, and this approach has shown efficacy in asthmatic patients. Current body of evidence suggests that alarmins are useful upstream targets for treatment of asthma.
American Journal of Respiratory and Critical Care Medicine | 2018
Dhuha Al-Sajee; Roma Sehmi; Thomas J. Hawke; Amani El-Gammal; Karen Howie; Richard M. Watson; Marco Londei; Gail M. Gauvreau; Paul M. O'Byrne