Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diana Bellin is active.

Publication


Featured researches published by Diana Bellin.


Scientific Reports | 2016

Constitutive cyclic GMP accumulation in Arabidopsis thaliana compromises systemic acquired resistance induced by an avirulent pathogen by modulating local signals

Jamshaid Hussain; Jian Chen; Vittoria Locato; Wilma Sabetta; Smrutisanjita Behera; Sara Cimini; Francesca Griggio; Silvia Martínez-Jaime; Alexander Graf; Mabrouk Bouneb; Raman Pachaiappan; Paola Fincato; Emanuela Blanco; Alex Costa; Laura De Gara; Diana Bellin; Maria Concetta de Pinto; Elodie Vandelle

The infection of Arabidopsis thaliana plants with avirulent pathogens causes the accumulation of cGMP with a biphasic profile downstream of nitric oxide signalling. However, plant enzymes that modulate cGMP levels have yet to be identified, so we generated transgenic A. thaliana plants expressing the rat soluble guanylate cyclase (GC) to increase genetically the level of cGMP and to study the function of cGMP in plant defence responses. Once confirmed that cGMP levels were higher in the GC transgenic lines than in wild-type controls, the GC transgenic plants were then challenged with bacterial pathogens and their defence responses were characterized. Although local resistance was similar in the GC transgenic and wild-type lines, differences in the redox state suggested potential cross-talk between cGMP and the glutathione redox system. Furthermore, large-scale transcriptomic and proteomic analysis highlighted the significant modulation of both gene expression and protein abundance at the infection site, inhibiting the establishment of systemic acquired resistance. Our data indicate that cGMP plays a key role in local responses controlling the induction of systemic acquired resistance in plants challenged with avirulent pathogens.


Plant Physiology | 2010

Characterization of Transcriptional Complexity during Berry Development in Vitis vinifera Using RNA-Seq

Sara Zenoni; Alberto Ferrarini; Enrico Giacomelli; Luciano Xumerle; Marianna Fasoli; Giovanni Malerba; Diana Bellin; Mario Pezzotti; Massimo Delledonne

The development of massively parallel sequencing technologies enables the sequencing of total cDNA (RNA-Seq) to derive accurate measure of individual gene expression, differential splicing activity, and to discover novel regions of transcription, dramatically changing the way that the functional complexity of transcriptomes can be studied. Here we report on the first use of RNA-Seq to gain insight into the wide range of transcriptional responses that are associated with berry development in Vitis vinifera ‘Corvina’. More than 59 million sequence reads, 36 to 44 bp in length, were generated from three developmental stages: post setting, véraison, and ripening. The sequence reads were aligned onto the 8.4-fold draft sequence of the Pinot Noir 40024 genome and then analyzed to measure gene expression levels, to detect alternative splicing events, and expressed single nucleotide polymorphisms. We detected 17,324 genes expressed during berry development, 6,695 of which were expressed in a stage-specific manner, suggesting differences in expression for genes in numerous functional categories and a significant transcriptional complexity. This exhaustive overview of gene expression dynamics demonstrates the utility of RNA-Seq for identifying single nucleotide polymorphisms and splice variants and for describing how plant transcriptomes change during development.


Current Opinion in Plant Biology | 2009

NO signals in the haze: Nitric oxide signalling in plant defence

Margit Leitner; Elodie Vandelle; Frank Gaupels; Diana Bellin; Massimo Delledonne

Nitric oxide (NO) is gaining increasing attention as a regulator of diverse (patho-)physiological processes in plants. Although this molecule has been described as playing a role in numerous conditions, its production, turnover and mode of action are poorly understood. Recent studies on NO production have tended to highlight the questions that still remain unanswered rather than telling us more about NO metabolism. But regarding NO signalling and functions, new findings have given an impression of the intricacy of NO-related signalling networks. Different targets of protein S-nitrosylation have been characterised and enzymatic routes controlling this posttranslational modification are emerging, along with their physiological implications. Evidence is also accumulating for protein tyrosine nitration and cGMP as important components of NO-related signal transduction.


Molecular Plant-microbe Interactions | 2013

Nitric Oxide as a Mediator for Defense Responses

Diana Bellin; Shuta Asai; Massimo Delledonne; Hirofumi Yoshioka

Sequential recognition of invading microbes and rapid induction of plant immune responses comprise at least two recognition systems. Early basal defenses are initiated by pathogen-associated molecular patterns and pattern recognition receptors (PRR) in the plasma membrane. Pathogens produce effectors to suppress defense but plants, in turn, can sense such effectors by dominant plant resistance (R) gene products. Plant PRR and R proteins modulate signaling networks for defense responses that rely on rapid production of reactive nitrogen species (RNS) and reactive oxygen species (ROS). Recent research has shown that nitric oxide (NO) mainly mediates biological function through chemical reactions between locally controlled accumulation of RNS and proteins leading to potential alteration of protein function. Many proteins specifically regulated by NO and participating in signaling during plant defense response have been identified, highlighting the physiological relevance of these modifications in plant immunity. ROS function independently or in cooperation with NO during defense, modulating the RNS signaling functions through the entire process. This review provides an overview of current knowledge about regulatory mechanisms for NO burst and signaling, and crosstalk with ROS in response to pathogen attack.


BMC Plant Biology | 2010

Breakdown of resistance to grapevine downy mildew upon limited deployment of a resistant variety

Elisa Peressotti; Sabine Wiedemann-Merdinoglu; François Delmotte; Diana Bellin; Gabriele Di Gaspero; Raffaele Testolin; Didier Merdinoglu; Pere Mestre

BackgroundNatural disease resistance is a cost-effective and environmentally friendly way of controlling plant disease. Breeding programmes need to make sure that the resistance deployed is effective and durable. Grapevine downy mildew, caused by the Oomycete Plasmopara viticola, affects viticulture and it is controlled with pesticides. Downy mildew resistant grapevine varieties are a promising strategy to control the disease, but their use is currently restricted to very limited acreages. The arising of resistance-breaking isolates under such restricted deployment of resistant varieties would provide valuable information to design breeding strategies for the deployment of resistance genes over large acreages whilst reducing the risks of the resistance being defeated. The observation of heavy downy mildew symptoms on a plant of the resistant variety Bianca, whose resistance is conferred by a major gene, provided us with a putative example of emergence of a resistance-breaking isolate in the interaction between grapevine and P. viticola.ResultsIn this paper we describe the emergence of a P. viticola isolate (isolate SL) that specifically overcomes Rpv3, the major resistance gene carried by Bianca at chromosome 18. We show that isolate SL has the same behaviour as two P. viticola isolates avirulent on Bianca (isolates SC and SU) when inoculated on susceptible plants or on resistant plants carrying resistances derived from other sources, suggesting there is no fitness cost associated to the virulence. Molecular analysis shows that all three isolates are genetically closely related.ConclusionsOur results are the first description of a resistance-breaking isolate in the grapevine/P. viticola interaction, and show that, despite the reduced genetic variability of P. viticola in Europe compared to its basin of origin and the restricted use of natural resistance in European viticulture, resistance-breaking isolates overcoming monogenic resistances may arise even in cases where deployment of the resistant varieties is limited to small acreages. Our findings represent a warning call for the use of resistant varieties and an incentive to design breeding programmes aiming to optimize durability of the resistances.


BMC Genomics | 2013

De novo transcriptome characterization of Vitis vinifera cv. Corvina unveils varietal diversity.

Luca Venturini; Alberto Ferrarini; Sara Zenoni; Giovanni Battista Tornielli; Marianna Fasoli; Silvia Dal Santo; Andrea Minio; Genny Buson; Paola Tononi; Elisa Zago; Gianpiero Zamperin; Diana Bellin; Mario Pezzotti; Massimo Delledonne

BackgroundPlants such as grapevine (Vitis spp.) display significant inter-cultivar genetic and phenotypic variation. The genetic components underlying phenotypic diversity in grapevine must be understood in order to disentangle genetic and environmental factors.ResultsWe have shown that cDNA sequencing by RNA-seq is a robust approach for the characterization of varietal diversity between a local grapevine cultivar (Corvina) and the PN40024 reference genome. We detected 15,161 known genes including 9463 with novel splice isoforms, and identified 2321 potentially novel protein-coding genes in non-annotated or unassembled regions of the reference genome. We also discovered 180 apparent private genes in the Corvina genome which were missing from the reference genome.ConclusionsThe de novo assembly approach allowed a substantial amount of the Corvina transcriptome to be reconstructed, improving known gene annotations by robustly defining gene structures, annotating splice isoforms and detecting genes without annotations. The private genes we discovered are likely to be nonessential but could influence certain cultivar-specific characteristics. Therefore, the application of de novo transcriptome assembly should not be restricted to species lacking a reference genome because it can also improve existing reference genome annotations and identify novel, cultivar-specific genes.


Nitric Oxide | 2014

Detection and function of nitric oxide during the hypersensitive response in Arabidopsis thaliana: where there's a will there's a way.

Jian Chen; Elodie Vandelle; Diana Bellin; Massimo Delledonne

Nitric oxide (NO) was identified as a key player in plant defence responses approximately 20 years ago and a large body of evidence has accumulated since then supporting its role as a signalling molecule. However, there are many discrepancies in current NO detection assays and the enzymatic pathways responsible for its synthesis have yet to be determined. This has provoked strong debates concerning the function of NO in plants, even questioning its existence in planta. Here we gather data obtained using the model pathosystem Arabidopsis/Pseudomonas, which confirms the production of NO during the hypersensitive response and supports is role as a trigger of hypersensitive cell death and a mediator of defence gene expression. Finally, we discuss potential sources of NO synthesis, focusing on the role of nitrite as major substrate for NO production during incompatible interactions.


Phytopathology | 2015

Transcriptional Reprogramming of the Mycoparasitic Fungus Ampelomyces quisqualis During the Powdery Mildew Host-Induced Germination.

Stefanos Siozios; Lorenzo Tosi; Alberto Ferrarini; Alessandro Ferrari; Paola Tononi; Diana Bellin; Monika Maurhofer; Cesare Gessler; Massimo Delledonne

Ampelomyces quisqualis is a mycoparasite of a diverse range of phytopathogenic fungi associated with the powdery mildew disease. Among them are several Erysiphaceae species with great economic impact on high-value crops such as grape. Due to its ability to parasitize and prevent the spread of powdery mildews, A. quisqualis has received considerable attention for its biocontrol potential. However, and in sharp contrast to the extensively studied biocontrol species belonging to the genus Trichoderma, little is known about the biology of A. quisqualis at the molecular and genetic levels. We present the first genome-wide transcription profiling in A. quisqualis during host-induced germination. A total of 1,536 putative genes showed significant changes in transcription during the germination of A. quisqualis. This finding denotes an extensive transcriptional reprogramming of A. quisqualis induced by the presence of the host. Several upregulated genes were predicted to encode for putative mycoparasitism-related proteins such as secreted proteases, virulence factors, and proteins related to toxin biosynthesis. Our data provide the most comprehensive sequence resource currently available for A. quisqualis in addition to offering valuable insights into the biology of A. quisqualis and its mycoparasitic lifestyle. Eventually, this may improve the biocontrol capacity of this mycoparasite.


The Plant Cell | 2017

Host-mediated S-nitrosylation disarms the bacterial effector HopAI1 to re-establish immunity

Tengfang Ling; Diana Bellin; Elodie Vandelle; Zahra Imanifard; Massimo Delledonne

S-nitrosylation of the bacterial effector HopAI1 during plant infection is a nitric oxide-dependent host strategy to disarm the effector activity and reestablish immunity Pathogens deliver effectors into plant cells to suppress immunity-related signaling. However, effector recognition by the host elicits a hypersensitive response (HR) that overcomes the inhibition of host signaling networks, restoring disease resistance. Signaling components are shared between the pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity, and it is unclear how plants inactivate these effectors to execute the HR. Here, we report that, in Arabidopsis thaliana, during the onset of the HR, the bacterial effector HopAI1 is S-nitrosylated and that this modification inhibits its phosphothreonine lyase activity. HopAI1 targets and suppresses mitogen-activated protein kinases (MAPKs). The S-nitrosylation of HopAI1 restores MAPK signaling and is required during the HR for activation of the associated cell death. S-nitrosylation is therefore revealed here as a nitric oxide-dependent host strategy involved in plant immunity that works by directly disarming effector proteins.


Archive | 2018

Measurement of Hypersensitive Cell Death Triggered by Avirulent Bacterial Pathogens in Arabidopsis

Zahra Imanifard; Elodie Vandelle; Diana Bellin

The hypersensitive response is one of the most powerful and complex defense reactions to survive to pathogen attacks during an incompatible plant-pathogen interaction. Local programmed cell death accompanies the hypersensitive response at the site of infection to prevent pathogen growth and spread. A precise quantitative assessment of this form of programmed cell death is essential to unravel the genetic and molecular mechanisms underlying the process. Here, we first describe the optimization of a Trypan Blue staining protocol for quantitatively measuring the HR-cell death in Arabidopsis. Furthermore, we provide an electrolyte leakage protocol based on pathogen vacuum infiltration, which allows its simultaneous application to a large number of plants as well as to Arabidopsis mutants affected by small size phenotype.

Collaboration


Dive into the Diana Bellin's collaboration.

Top Co-Authors

Avatar

Massimo Delledonne

Polytechnic University of Turin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adriano Marocco

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Alessandra Lanubile

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Valentina Maschietto

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge