Diana Caridha
Walter Reed Army Institute of Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Diana Caridha.
Organic and Biomolecular Chemistry | 2009
Peter Wipf; Tingting Mo; Steven J. Geib; Diana Caridha; Geoffrey S. Dow; Lucia Gerena; Norma Roncal; Erin E. Milner
Two novel SF5 analogs of the antimalarial agent mefloquine were synthesized in 5 steps and 10-23% overall yields and found to have improved activity and selectivity against malaria parasites. This work also represents the first report of SF5-substituted quinolines.
Antimicrobial Agents and Chemotherapy | 2008
Geoffrey S. Dow; Yufeng Chen; Katherine Thea Andrews; Diana Caridha; Lucia Gerena; Montip Gettayacamin; Jacob D. Johnson; Qigui Li; Victor Melendez; Nicandor Obaldia Iii; Thanh Nguyen Tran; Alan P. Kozikowski
ABSTRACT The antimalarial activity and pharmacology of a series of phenylthiazolyl-bearing hydroxamate-based histone deacetylase inhibitors (HDACIs) was evaluated. In in vitro growth inhibition assays approximately 50 analogs were evaluated against four drug resistant strains of Plasmodium falciparum. The range of 50% inhibitory concentrations (IC50s) was 0.0005 to >1 μM. Five analogs exhibited IC50s of <3 nM, and three of these exhibited selectivity indices of >600. The most potent compound, WR301801 (YC-2-88) was shown to cause hyperacetylation of P. falciparum histones, which is a marker for HDAC inhibition in eukaryotic cells. The compound also inhibited malarial and mammalian HDAC activity in functional assays at low nanomolar concentrations. WR301801 did not exhibit cures in P. berghei-infected mice at oral doses as high as 640 mg/kg/day for 3 days or in P. falciparum-infected Aotus lemurinus lemurinus monkeys at oral doses of 32 mg/kg/day for 3 days, despite high relative bioavailability. The failure of monotherapy in mice may be due to a short half-life, since the compound was rapidly hydrolyzed to an inactive acid metabolite by loss of its hydroxamate group in vitro (half-life of 11 min in mouse microsomes) and in vivo (half-life in mice of 3.5 h after a single oral dose of 50 mg/kg). However, WR301801 exhibited cures in P. berghei-infected mice when combined at doses of 52 mg/kg/day orally with subcurative doses of chloroquine. Next-generation HDACIs with greater metabolic stability than WR301801 may be useful as antimalarials if combined appropriately with conventional antimalarial drugs.
Bioorganic & Medicinal Chemistry Letters | 2010
Erin E. Milner; William McCalmont; Jayendra B. Bhonsle; Diana Caridha; Dustin Carroll; Sean Gardner; Lucia Gerena; Montip Gettayacamin; Charlotte A. Lanteri; ThuLan Luong; Victor Melendez; Jay Moon; Norma Roncal; Jason Sousa; Anchalee Tungtaeng; Peter Wipf; Geoffrey S. Dow
Utilizing mefloquine as a scaffold, a next generation quinoline methanol (NGQM) library was constructed to identify early lead compounds that possess biological properties consistent with the target product profile for malaria chemoprophylaxis while reducing permeability across the blood-brain barrier. The library of 200 analogs resulted in compounds that inhibit the growth of drug sensitive and resistant strains of Plasmodium falciparum. Herein we report selected chemotypes and the emerging structure-activity relationship for this library of quinoline methanols.
Antimicrobial Agents and Chemotherapy | 2008
Diana Caridha; D. Yourick; M. Cabezas; Lesley Wolf; Thomas H. Hudson; Geoffrey S. Dow
ABSTRACT In previous studies, we have shown that mefloquine disrupts calcium homeostasis in neurons by depletion of endoplasmic reticulum (ER) stores, followed by an influx of external calcium across the plasma membrane. In this study, we explore two hypotheses concerning the mechanism(s) of action of mefloquine. First, we investigated the possibility that mefloquine activates non-N-methyl-d-aspartic acid receptors and the inositol phosphate 3 (IP3) signaling cascade leading to ER calcium release. Second, we compared the disruptive effects of mefloquine on calcium homeostasis to those of ionomycin in neuronal and nonneuronal cells. Ionomycin is known to discharge the ER calcium store (through an undefined mechanism), which induces capacitative calcium entry (CCE). In radioligand binding assays, mefloquine showed no affinity for the known binding sites of several glutamate receptor subtypes. The pattern of neuroprotection induced by a panel of glutamate receptor antagonists was dissimilar to that of mefloquine. Both mefloquine and ionomycin exhibited dose-related and qualitatively similar disruptions of calcium homeostasis in both neurons and macrophages. The influx of external calcium was blocked by the inhibitors of CCE in a dose-related fashion. Both mefloquine and ionomycin upregulated the IP3 pathway in a manner that we interpret to be secondary to CCE. Collectively, these data suggest that mefloquine does not activate glutamate receptors and that it disrupts calcium homeostasis in mammalian cells in a manner similar to that of ionomycin.
Proteins | 2003
Janusz M. Bujnicki; Sean T. Prigge; Diana Caridha; Peter K. Chiang
S‐adenosylhomocysteine hydrolase (SAHH) is a key regulator of S‐adenosylmethionine–dependent methylation reactions and an interesting pharmacologic target. We cloned the SAHH gene from Plasmodium falciparum (PfSAHH), with an amino acid sequence agreeing with that of the PlasmoDB genomic database. Even though the expressed recombinant enzyme, PfSAHH, could use 3‐deaza‐adenosine (DZA) as an alternative substrate in contrast to the human SAHH, it has a unique inability to substitute 3‐deaza‐(±)aristeromycin (DZAri) for adenosine. Among the analogs of DZA, including neplanocin A, DZAri was the most potent inhibitor of the PfSAHH enzyme activity, with a Ki of about 150 nM, whether Ado or DZA was used as a substrate. When the same DZA analogs were tested for their antimalarial activity, they also inhibited the in vitro growth of P. falciparum parasites potently. Homology‐modeling analysis revealed that a single substitution (Thr60‐Cys59) between the human and malarial PfSAHH, in an otherwise similar SAH‐binding pocket, might account for the differential interactions with the nucleoside analogs. This subtle difference in the active site may be exploited in the development of novel drugs that selectively inhibit PfSAHH. We performed a comprehensive phylogenetic analysis of the SAHH superfamily and inferred that SAHH evolved in the common ancestor of Archaea and Eukaryota, and was subsequently horizontally transferred to Bacteria. Additionally, an analysis of the unusual and uncharacterized AHCYL1 family of the SAHH paralogs extant only in animals reveals striking divergence of its SAH‐binding pocket and the loss of key conserved residues, thus suggesting an evolution of novel function(s). Proteins 2003;52:624–632.
Malaria Journal | 2010
Erin E. Milner; William McCalmont; Jayendra B. Bhonsle; Diana Caridha; Jose Cobar; Sean Gardner; Lucia Gerena; Duane Goodine; Charlotte A. Lanteri; Victor Melendez; Norma Roncal; Jason Sousa; Peter Wipf; Geoffrey S. Dow
BackgroundThe clinical utility for mefloquine has been eroded due to its association with adverse neurological effects. Better-tolerated alternatives are required. The objective of the present study was the identification of lead compounds that are as effective as mefloquine, but exhibit physiochemical properties likely to render them less susceptible to passage across the blood-brain barrier.MethodsA library of drug-like non-piperidine analogs of mefloquine was synthesized. These compounds are diverse in structure and physiochemical properties. They were screened in appropriate in vitro assays and evaluated in terms of their potential as lead compounds. The correlation of specific structural attributes and physiochemical properties with activity was assessed.ResultsThe most potent analogs were low molecular weight unconjugated secondary amines with no heteroatoms in their side-chains. However, these compounds were more metabolically labile and permeable than mefloquine. In terms of physiochemical properties, lower polar surface area, lower molecular weight, more freely rotatable bonds and fewer H-bond acceptors were associated with greater potency. There was no such relationship between activity and LogP, LogD or the number of hydrogen bond donors (HBDs). The addition of an H-bond donor to the side-chain yielded a series of active diamines, which were as metabolically stable as mefloquine but showed reduced permeability.ConclusionsA drug-like library of non-piperidine analogs of mefloquine was synthesized. From amongst this library an active lead series of less permeable, but metabolically stable, diamines was identified.
Antimicrobial Agents and Chemotherapy | 2006
Geoffrey S. Dow; T. N. Heady; A. K. Bhattacharjee; Diana Caridha; Lucia Gerena; Montip Gettayacamin; Charlotte A. Lanteri; N. Obaldia; Norma Roncal; T. Shearer; P. L. Smith; A. Tungtaeng; L. Wolf; M. Cabezas; D. Yourick; Kirsten S. Smith
ABSTRACT Mefloquine has been one of the more valuable antimalarial drugs but has never reached its full clinical potential due to concerns about its neurologic side effects, its greater expense than that of other antimalarials, and the emergence of resistance. The commercial development of mefloquine superseded that of another quinolinyl methanol, WR030090, which was used as an experimental antimalarial drug by the U.S. Army in the 1970s. We evaluated a series of related 2-phenyl-substituted alkylaminoquinolinyl methanols (AAQMs) for their potential as mefloquine replacement drugs based on a series of appropriate in vitro and in vivo efficacy and toxicology screens and the theoretical cost of goods. Generally, the AAQMs were less neurotoxic and exhibited greater antimalarial potency, and they are potentially cheaper than mefloquine, but they showed poorer metabolic stability and pharmacokinetics and the potential for phototoxicity. These differences in physiochemical and biological properties are attributable to the “opening” of the piperidine ring of the 4-position side chain. Modification of the most promising compound, WR069878, by substitution of an appropriate N functionality at the 4 position, optimization of quinoline ring substituents at the 6 and 7 positions, and deconjugation of quinoline and phenyl ring systems is anticipated to yield a valuable new antimalarial drug.
Molecular and Biochemical Parasitology | 2010
Dayadevi Jirage; Yueqin Chen; Diana Caridha; Michael T. O’Neil; Fredrick Eyase; William H. Witola; Choukri Ben Mamoun; Norman C. Waters
Cyclin-dependent kinases (CDKs) have an established role in metazoans and yeast in DNA replication, transcription and cell cycle regulation. Several CDKs and their effectors have been identified in the malaria parasite Plasmodium falciparum and their biological functions are beginning to be investigated. Here we report results from the functional characterization of Pfmrk and its effector PfMAT1. We validated the interactions between Pfmrk and PfMAT1 and pinpointed their intracellular location. Co-immunoprecipitation studies demonstrated physical interaction between the two proteins and identified the C-terminal domain of PfMAT1 as the Pfmrk activator domain. Immunofluorescence analyses using GFP and RFP-tagged versions of Pfmrk and PfMAT1, respectively, demonstrated the co-localization of these two proteins to the parasite nucleus. Bacterial two-hybrid screen of a P. falciparum cDNA library using Pfmrk as the bait identified two plasmodial DNA replication proteins, PfRFC-5 and PfMCM6, as interactors with Pfmrk. We demonstrate that that these two proteins are substrates of Pfmrk-mediated phosphorylation and that PfMAT1 confers substrate specificity to the Pfmrk kinase complex. Collectively, these data suggest a role for Pfmrk in the nucleus of the parasite presumably in regulation of the DNA replication machinery.
Malaria Journal | 2011
Geoffrey S. Dow; Erin E. Milner; Ian Bathurst; Jayendra B. Bhonsle; Diana Caridha; Sean Gardner; Lucia Gerena; Michael P. Kozar; Charlotte A. Lanteri; Anne Mannila; William McCalmont; Jay Moon; Kevin D. Read; Suzanne Norval; Norma Roncal; David M. Shackleford; Jason Sousa; Jessica Steuten; Karen L. White; Qiang Zeng; Susan A. Charman
BackgroundThe clinical use of mefloquine (MQ) has declined due to dose-related neurological events. Next generation quinoline methanols (NGQMs) that do not accumulate in the central nervous system (CNS) to the same extent may have utility. In this study, CNS levels of NGQMs relative to MQ were measured and an early lead chemotype was identified for further optimization.Experimental designThe plasma and brain levels of MQ and twenty five, 4-position modified NGQMs were determined using LCMS/MS at 5 min, 1, 6 and 24 h after IV administration (5 mg/kg) to male FVB mice. Fraction unbound in brain tissue homogenate was assessed in vitro using equilibrium dialysis and this was then used to calculate brain-unbound concentration from the measured brain total concentration. A five-fold reduction CNS levels relative to mefloquine was considered acceptable. Additional pharmacological properties such as permeability and potency were determined.ResultsThe maximum brain (whole/free) concentrations of MQ were 1807/4.9 ng/g. Maximum whole brain concentrations of NGQMs were 23 - 21546 ng/g. Maximum free brain concentrations were 0.5 to 267 ng/g. Seven (28%) and two (8%) compounds exhibited acceptable whole and free brain concentrations, respectively. Optimization of maximum free brain levels, IC90s (as a measure or potency) and residual plasma concentrations at 24 h (as a surrogate for half-life) in the same molecule may be feasible since they were not correlated. Diamine quinoline methanols were the most promising lead compounds.ConclusionReduction of CNS levels of NGQMs relative to mefloquine may be feasible. Optimization of this property together with potency and long half-life may be feasible amongst diamine quinoline methanols.
Bioorganic & Medicinal Chemistry Letters | 2010
Diana Caridha; April K. Kathcart; Dayadevi Jirage; Norman C. Waters
Cyclin dependent protein kinases (CDKs) are pursued as drug targets for several eukaryotic pathogens. In this study, we identified thiophene and benzene sulfonamides as potent inhibitors of Pfmrk, a Plasmodium falciparum CDK with sequence homology to human CDK7. Several of the compounds demonstrated inhibitor selectivity for CDK7 over CDK1, CDK2, and CDK6. The compounds are moderate antimalarial agents against drug resistant parasites and possess encouraging in vitro therapeutic indices as determined against human cell lines. One particular sub-class of compounds, bromohydrosulfonylacetamides, was specific for Pfmrk with IC(50) values in the sub-micromolar range. These compounds represent the most potent Pfmrk inhibitors reported and provide support for further characterization and derivation as potential antimalarial agents.