Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diana Dahan is active.

Publication


Featured researches published by Diana Dahan.


Pflügers Archiv: European Journal of Physiology | 2012

Involvement of TRPV1 and TRPV4 channels in migration of rat pulmonary arterial smooth muscle cells.

Elodie Martin; Diana Dahan; Guillaume Cardouat; Jennifer Gillibert-Duplantier; Roger Marthan; Jean-Pierre Savineau; Thomas Ducret

Pulmonary hypertension, the main disease of the pulmonary circulation, is characterized by an increase in pulmonary vascular resistance, involving proliferation and migration of pulmonary arterial smooth muscle cells (PASMC). However, cellular and molecular mechanisms underlying these phenomena remain to be identified. In the present study, we thus investigated in rat intrapulmonary arteries (1) the expression and the functional activity of TRPV1 and TRPV4, (2) the PASMC migration triggered by these TRPV channels, and (3) the associated reorganization of the cytoskeleton. Reverse transcriptase–polymerase chain reaction (RT-PCR) analysis demonstrated expression of TRPV1 and TRPV4 mRNA in rat intrapulmonary arteries. These results were confirmed at the protein level by western blot. Using microspectrofluorimetry (indo-1), we show that capsaicin and 4α-phorbol-12,13-didecanoate (4α-PDD), selective agonists of TRPV1 and TRPV4, respectively, increased the intracellular calcium concentration of PASMC. Furthermore, stimulation of TRPV1 and TRPV4 induced PASMC migratory responses, as assessed by two different methods (a modified Boyden chamber assay and a wound-healing migration assay). This response cannot seem to be attributed to a proliferative effect as assessed by BrdU and Wst-1 colorimetric methods. Capsaicin- and 4α-PDD-induced calcium and migratory responses were inhibited by the selective TRPV1 and TRPV4 blockers, capsazepine and HC067047, respectively. Finally, as assessed by immunostaining, these TRPV-induced migratory responses were associated with reorganization of the F-actin cytoskeleton and the tubulin and intermediate filament networks. In conclusion, these data point out, for the first time, the implication of TRPV1 and TRPV4 in rat PASMC migration, suggesting the implication of these TRPV channels in the physiopathology of pulmonary hypertension.


PLOS ONE | 2013

Mir-29 Repression in Bladder Outlet Obstruction Contributes to Matrix Remodeling and Altered Stiffness

Mari Ekman; Anirban Bhattachariya; Diana Dahan; Bengt Uvelius; Sebastian Albinsson; Karl Swärd

Recent work has uncovered a role of the microRNA (miRNA) miR-29 in remodeling of the extracellular matrix. Partial bladder outlet obstruction is a prevalent condition in older men with prostate enlargement that leads to matrix synthesis in the lower urinary tract and increases bladder stiffness. Here we tested the hypothesis that miR-29 is repressed in the bladder in outlet obstruction and that this has an impact on protein synthesis and matrix remodeling leading to increased bladder stiffness. c-Myc, NF-κB and SMAD3, all of which repress miR-29, were activated in the rat detrusor following partial bladder outlet obstruction but at different times. c-Myc and NF-κB activation occurred early after obstruction, and SMAD3 phosphorylation increased later, with a significant elevation at 6 weeks. c-Myc, NF-κB and SMAD3 activation, respectively, correlated with repression of miR-29b and miR-29c at 10 days of obstruction and with repression of miR-29c at 6 weeks. An mRNA microarray analysis showed that the reduction of miR-29 following outlet obstruction was associated with increased levels of miR-29 target mRNAs, including mRNAs for tropoelastin, the matricellular protein Sparc and collagen IV. Outlet obstruction increased protein levels of eight out of eight examined miR-29 targets, including tropoelastin and Sparc. Transfection of human bladder smooth muscle cells with antimiR-29c and miR-29c mimic caused reciprocal changes in target protein levels in vitro. Tamoxifen inducible and smooth muscle-specific deletion of Dicer in mice reduced miR-29 expression and increased tropoelastin and the thickness of the basal lamina surrounding smooth muscle cells in the bladder. It also increased detrusor stiffness independent of outlet obstruction. Taken together, our study supports a model where the combined repressive influences of c-Myc, NF-κB and SMAD3 reduce miR-29 in bladder outlet obstruction, and where the resulting drop in miR-29 contributes to matrix remodeling and altered passive mechanical properties of the detrusor.


Respiratory Research | 2011

Role of the gap junctions in the contractile response to agonists in pulmonary artery from two rat models of pulmonary hypertension

Marie Billaud; Diana Dahan; Roger Marthan; Jean-Pierre Savineau; Christelle Guibert

BackgroundPulmonary hypertension (PH) is characterized by arterial vascular remodelling and alteration in vascular reactivity. Since gap junctions are formed with proteins named connexins (Cx) and contribute to vasoreactivity, we investigated both expression and role of Cx in the pulmonary arterial vasoreactivity in two rat models of PH.MethodsIntrapulmonary arteries (IPA) were isolated from normoxic rats (N), rats exposed to chronic hypoxia (CH) or treated with monocrotaline (MCT). RT-PCR, Western Blot and immunofluorescent labelling were used to study the Cx expression. The role of Cx in arterial reactivity was assessed by using isometric contraction and specific gap junction blockers. Contractile responses were induced by agonists already known to be involved in PH, namely serotonin, endothelin-1 and phenylephrine.ResultsCx 37, 40 and 43 were expressed in all rat models and Cx43 was increased in CH rats. In IPA from N rats only, the contraction to serotonin was decreased after treatment with 37-43Gap27, a specific Cx-mimetic peptide blocker of Cx 37 and 43. The contraction to endothelin-1 was unchanged after incubation with 40Gap27 (a specific blocker of Cx 40) or 37-43Gap27 in N, CH and MCT rats. In contrast, the contraction to phenylephrine was decreased by 40Gap27 or 37-43Gap27 in CH and MCT rats. Moreover, the contractile sensitivity to high potassium solutions was increased in CH rats and this hypersensitivity was reversed following 37-43Gap27 incubation.ConclusionAltogether, Cx 37, 40 and 43 are differently expressed and involved in the vasoreactivity to various stimuli in IPA from different rat models. These data may help to understand alterations of pulmonary arterial reactivity observed in PH and to improve the development of innovative therapies according to PH aetiology.


American Journal of Physiology-cell Physiology | 2014

Induction of angiotensin converting enzyme after miR-143/145 deletion is critical for impaired smooth muscle contractility.

Diana Dahan; Mari Ekman; Anna-Karin Larsson-Callerfelt; Karolina M. Turczyńska; Thomas Boettger; Thomas Braun; Karl Swärd; Sebastian Albinsson

MicroRNAs have emerged as regulators of smooth muscle cell phenotype with a role in smooth muscle-related disease. Studies have shown that miR-143 and miR-145 are the most highly expressed microRNAs in smooth muscle cells, controlling differentiation and function. The effect of miR-143/145 knockout has been established in the vasculature but not in smooth muscle from other organs. Using knockout mice we found that maximal contraction induced by either depolarization or phosphatase inhibition was reduced in vascular and airway smooth muscle but maintained in the urinary bladder. Furthermore, a reduction of media thickness and reduced expression of differentiation markers was seen in the aorta but not in the bladder. Supporting the view that phenotype switching depends on a tissue-specific target of miR-143/145, we found induction of angiotensin-converting enzyme in the aorta but not in the bladder where angiotensin-converting enzyme was expressed at a low level. Chronic treatment with angiotensin type-1 receptor antagonist restored contractility in miR-143/145-deficient aorta while leaving bladder contractility unaffected. This shows that tissue-specific targets are critical for the effects of miR-143/145 on smooth muscle differentiation and that angiotensin converting enzyme is one such target.


Journal of Biological Chemistry | 2016

Elevated glucose levels promote contractile and cytoskeletal gene expression in vascular smooth muscle via Rho/protein kinase C and actin polymerization

Tran Thi Hien; Karolina M. Turczyńska; Diana Dahan; Mari Ekman; Mario Grossi; Johan Sjögren; Johan Nilsson; Thomas Braun; Thomas Boettger; Eliana Garcia-Vaz; Karin G. Stenkula; Karl Swärd; Maria F. Gomez; Sebastian Albinsson

Both type 1 and type 2 diabetes are associated with increased risk of cardiovascular disease. This is in part attributed to the effects of hyperglycemia on vascular endothelial and smooth muscle cells, but the underlying mechanisms are not fully understood. In diabetic animal models, hyperglycemia results in hypercontractility of vascular smooth muscle possibly due to increased activation of Rho-kinase. The aim of the present study was to investigate the regulation of contractile smooth muscle markers by glucose and to determine the signaling pathways that are activated by hyperglycemia in smooth muscle cells. Microarray, quantitative PCR, and Western blot analyses revealed that both mRNA and protein expression of contractile smooth muscle markers were increased in isolated smooth muscle cells cultured under high compared with low glucose conditions. This effect was also observed in hyperglycemic Akita mice and in diabetic patients. Elevated glucose activated the protein kinase C and Rho/Rho-kinase signaling pathways and stimulated actin polymerization. Glucose-induced expression of contractile smooth muscle markers in cultured cells could be partially or completely repressed by inhibitors of advanced glycation end products, L-type calcium channels, protein kinase C, Rho-kinase, actin polymerization, and myocardin-related transcription factors. Furthermore, genetic ablation of the miR-143/145 cluster prevented the effects of glucose on smooth muscle marker expression. In conclusion, these data demonstrate a possible link between hyperglycemia and vascular disease states associated with smooth muscle contractility.


PLOS ONE | 2015

Detrusor Induction of miR-132/212 following Bladder Outlet Obstruction: Association with MeCP2 Repression and Cell Viability.

Mardjaneh Karbalaei Sadegh; Mari Ekman; Katarzyna K. Krawczyk; Daniel Svensson; Olga Göransson; Diana Dahan; Bengt-Olof Nilsson; Sebastian Albinsson; Bengt Uvelius; Karl Swärd

The microRNAs (miRNAs) miR-132 and miR-212 have been found to regulate synaptic plasticity and cholinergic signaling and recent work has demonstrated roles outside of the CNS, including in smooth muscle. Here, we examined if miR-132 and miR-212 are induced in the urinary bladder following outlet obstruction and whether this correlates with effects on gene expression and cell growth. Three to seven-fold induction of miR-132/212 was found at 10 days of obstruction and this was selective for the detrusor layer. We cross-referenced putative binding sites in the miR-132/212 promoter with transcription factors that were predicted to be active in the obstruction model. This suggested involvement of Creb and Ahr in miR-132/212 induction. Creb phosphorylation (S-133) was not increased, but the number of Ahr positive nuclei increased. Moreover, we found that serum stimulation and protein kinase C activation induced miR-132/212 in human detrusor cells. To identify miR-132/212 targets, we correlated the mRNA levels of validated targets with the miRNA levels. Significant correlations between miR-132/212 and MeCP2, Ep300, Pnkd and Jarid1a were observed, and the protein levels of MeCP2, Pnkd and Ache were reduced after obstruction. Reduction of Ache however closely matched a 90% reduction of synapse density arguing that its repression was unrelated to miR-132/212 induction. Importantly, transfection of antimirs and mimics in cultured detrusor cells increased and decreased, respectively, the number of cells and led to changes in MeCP2 expression. In all, these findings show that obstruction of the urethra increases miR-132 and miR-212 in the detrusor and suggests that this influences gene expression and limits cell growth.


European Respiratory Journal | 2012

Dehydroepiandrosterone reverses chronic hypoxia/reoxygenation-induced right ventricular dysfunction in rats

Eric Dumas de la Roque; Nadège Bellance; Rodrigue Rossignol; Hugues Begueret; Marie Billaud; Pierre Dos Santos; Thomas Ducret; Roger Marthan; Diana Dahan; David Ramos-Barbón; Óscar Amor-Carro; Jean Pierre Savineau; M. Fayon

Dehydroepiandrosterone (DHEA) prevents chronic hypoxia-induced pulmonary hypertension and associated right ventricle dysfunction in rats. In this animal model, reoxygenation following hypoxia reverses pulmonary hypertension but not right ventricle dysfunction. We thus studied the effect of DHEA on the right ventricle after reoxygenation, i.e. after a normoxic recovery phase secondary to chronic hypoxia in rats. Right ventricle function was assessed in vivo by Doppler echocardiography and in vitro by the isolated perfused heart technique in three groups of animals: control, recovery (21 days of hypoxia followed by 21 days of normoxia) and recovery DHEA (30 mg·kg−1 every 2 days during the recovery phase). Right ventricle tissue was assessed by optical and electron microscopy. DHEA abolished right ventricle diastolic dysfunction, as the echographic E wave remained close to that of controls (mean±sd 76.5±2.4 and 79.7±1.7 cm·s−1, respectively), whereas it was diminished to 40.3±3.7 in the recovery group. DHEA also abolished right ventricle systolic dysfunction, as shown by the inhibition of the increase in the slope of the pressure–volume curve in isolated heart. The DHEA effect was related to cardiac myocytes proliferation. In conclusion, DHEA prevents right ventricle dysfunction in this animal model by preventing cardiomyocyte alteration.


Journal of Vascular Research | 2012

Development and characterization of an animal model of severe pulmonary arterial hypertension

Yoshitaka Morimatsu; Naomi Sakashita; Yoshihiro Komohara; Koji Ohnishi; Hiroshi Masuda; Diana Dahan; Motohiro Takeya; Christelle Guibert; Roger Marthan

Pulmonary arterial hypertension (PAH) is a serious pathological phenomenon with poor prognosis, which is associated with morphological as well as hemodynamic alteration of the pulmonary circulation. To establish an animal model mimicking severe human PAH, we combined 2 well-described procedures, i.e. exposure to hypobaric chronic hypoxia and administration of monocrotaline hydrochloride in rats. Compared to a single procedure, the combined procedure induced more severe right ventricle hypertrophy and an increase in right ventricle systolic pressure. Histological examination on the combined procedure model revealed a severe medial hypertrophy as well as occlusive vascular changes of the intra-acinar pulmonary arteries with endothelial lesions. It is noteworthy that severe alterations including concentric neointimal thickening, abnormal endothelial proliferation, plexiform lesions and vascular occlusion with fibrin thrombi were observed in the combined pulmonary hypertension model when exposed to a long period of hypoxia. The present data indicate that a combined treatment of monocrotaline injection and hypobaric chronic hypoxia exposure produces more severe hemodynamic changes and histological alterations. Since human PAH diagnosed in clinical practice is often severe, this combined treatment animal model could be useful to identify relevant therapeutic targets acting on both hemodynamic and structural alterations of the pulmonary circulation.


Cardiovascular Research | 2014

Expression of microRNAs is essential for arterial myogenic tone and pressure-induced activation of the PI3-kinase/Akt pathway

Anirban Bhattachariya; Diana Dahan; Karolina M. Turczyńska; Karl Swärd; Per Hellstrand; Sebastian Albinsson

AIMS The myogenic response is the intrinsic ability of small arteries to constrict in response to increased intraluminal pressure. Although microRNAs have been shown to play a role in vascular smooth muscle function, their importance in the regulation of the myogenic response is not known. In this study, we investigate the role of microRNAs in the regulation of myogenic tone by using smooth muscle-specific and tamoxifen-inducible deletion of the endonuclease Dicer in mice. METHODS AND RESULTS In order to avoid effects of Dicer deletion on smooth muscle differentiation and growth, we used an early time point (5 weeks) after the tamoxifen-induction of Dicer knockout (KO). At this time point, we found that myogenic tone was completely absent in the mesenteric arteries of Dicer KO mice. This was associated with a reduced pressure-induced Akt-phosphorylation, possibly via increased phosphatase and tensin homologue (PTEN) expression, which was found to be a target of miR-26a. Furthermore, loss of myogenic tone was associated with a decreased depolarization-induced calcium influx, and was restored by the L-type channel agonist Bay K 8644 or by transient stimulation with angiotensin II (Ang II). The effect of Ang II was dependent on AT1-receptors and activation of the PI3-kinase/Akt pathway. CONCLUSION In this study we have identified novel mechanisms that regulate myogenic tone in resistance arteries, which involves microRNA-dependent control of PI3-kinase/Akt signalling and L-type calcium influx. Furthermore, we have demonstrated that transient stimulation by Ang II can have long-lasting effects by potentiating myogenic tone.


Acta Physiologica | 2015

Spontaneous activity and stretch-induced contractile differentiation are reduced in vascular smooth muscle of miR-143/145 knockout mice.

Anirban Bhattachariya; Diana Dahan; Mari Ekman; Thomas Boettger; Thomas Braun; Karl Swärd; Per Hellstrand; Sebastian Albinsson

Stretch is essential for maintaining the contractile phenotype of vascular smooth muscle cells, and small non‐coding microRNAs are known to be important in this process. Using a Dicer knockout model, we have previously reported that microRNAs are essential for stretch‐induced differentiation and regulation of L‐type calcium channel expression. The aim of this study was to investigate the importance of the smooth muscle‐enriched miR‐143/145 microRNA cluster for stretch‐induced differentiation of the portal vein.

Collaboration


Dive into the Diana Dahan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge