Diana G. Franks
Woods Hole Oceanographic Institution
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Diana G. Franks.
Science | 2011
Isaac Wirgin; Nirmal K. Roy; Matthew Loftus; R. Christopher Chambers; Diana G. Franks; Mark E. Hahn
Chronic pollution of the Hudson River, New York, results in rapid evolution of resistance to the pollutants. The mechanistic basis of resistance of vertebrate populations to contaminants, including Atlantic tomcod from the Hudson River (HR) to polychlorinated biphenyls (PCBs), is unknown. HR tomcod exhibited variants in the aryl hydrocarbon receptor 2 (AHR2) that were nearly absent elsewhere. In ligand-binding assays, AHR2-1 protein (common in the HR) was impaired as compared to widespread AHR2-2 in binding TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) and in driving expression in reporter gene assays in AHR-deficient cells treated with TCDD or PCB126. We identified a six-base deletion in AHR2 as the basis of resistance and suggest that the HR population has undergone rapid evolution, probably due to contaminant exposure. This mechanistic basis of resistance in a vertebrate population provides evidence of evolutionary change due to selective pressure at a single locus.
Comparative Biochemistry and Physiology B | 2002
Sonya M. Billiard; Mark E. Hahn; Diana G. Franks; Richard E. Peterson; Niels C. Bols; Peter V. Hodson
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous, environmental contaminants that pose a potential risk to fish populations. Both field and laboratory studies suggest that exposure of the early life stages of fish to PAH can mimic the embryotoxic effects of the planar halogenated hydrocarbons (PHHs), the most potent of which is 2,3,7,8-tetrachlorodibenzo-p-dioxin. PHH toxicity is mediated by the aryl hydrocarbon receptor (AHR) and PHH potency is predicted by its AHR-binding affinity and CYP1A induction potency. However, the role of the AHR, if any, in mediating the developmental effects of PAH to fish remains unknown. In this study we looked at the AHR binding affinity of a test set of PAH that had been previously ranked for their potency for inducing teleost CYP1A. PAH that induced CYP1A inhibited [3H]TCDD binding to in vitro-expressed AHRs from rainbow trout and the AHR expressed in PLHC-1 fish hepatoma cells. Generally, the relative rank order for AHR binding affinity predicted the rank order of these same PAH for inducing CYP1A reported in other studies. There was a strong, positive relationship between binding to the PLHC-1 AHR (stimulus) and the EC50s for CYP1A induction (response) in whole juvenile trout and in RTL-W1 cells, but EC50s were much higher than expected for a 1:1 stimulus/response relationship. These data show that the ability of PAH to bind to teleost AHR predicts PAH potency for CYP1A induction. If PAH toxicity is receptor-mediated and predicted by induction potencies, we will have a powerful mechanistic-based tool for rapidly assessing the risk of toxicity to fish of PAH from any source.
Science | 1985
John B. Waterbury; Joanne M. Willey; Diana G. Franks; Frederica W. Valois; Stanley W. Watson
A novel cyanobacterium capable of swimming motility was isolated in pure culture from several locations in the Atlantic Ocean. It is a small unicellular form, assignable to the genus Synechococcus, that is capable of swimming through liquids at speeds of 25 micrometers per second. Light microscopy revealed that the motile cells display many features characteristic of bacterial flagellar motility. However, electron microscopy failed to reveal flagella and shearing did not arrest motility, indicating that the cyanobacterium may be propelled by a novel mechanism.
Biochemical Journal | 2005
Sibel I. Karchner; Diana G. Franks; Mark E. Hahn
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that regulates gene expression following activation by TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) or a variety of other synthetic and natural compounds. Previous studies have identified two AHR genes, AHR1 and AHR2, in zebrafish (Danio rerio), a widely used model species for studying vertebrate development and an emerging model in developmental toxicology. Zebrafish AHR2 binds TCDD with high affinity, is transcriptionally active and has a major role in mediating the developmental toxicity of TCDD. Zebrafish AHR1 lacks the ability to bind TCDD and activate transcription, and has no known function. In the present study, we report a new zebrafish AHR, designated AHR1B, which shares 34% amino acid sequence identity with AHR1 (AHR1A). The ahr1b gene resides on chromosome 22, adjacent to ahr2, whereas the ahr1a gene is located on chromosome 16. AHR1B is expressed in embryos as early as 24 hours post-fertilization and increases through the next 2 days, but expression is not inducible by TCDD. In contrast with the previously identified AHR1A, in vitro-expressed AHR1B protein exhibits specific, high-affinity binding of [3H]TCDD. Furthermore, AHR1B is able to activate the transcription of a reporter gene under the control of AHR response elements with an efficacy comparable with that of AHR2, but with a higher EC50. We speculate that AHR1B may have a physiological role, such as in embryonic development, whereas AHR2 mediates the response to xenobiotics.
International Journal of Systematic and Evolutionary Microbiology | 2002
Daniel L. Distel; Wendy Morrill; Noelle MacLaren-Toussaint; Diana G. Franks; John B. Waterbury
A cellulolytic, dinitrogen-fixing bacterium isolated from the gill tissue of a wood-boring mollusc (shipworm) Lyrodus pedicellatus of the bivalve family Teredinidae and 58 additional strains with similar properties, isolated from gills of 24 bivalve species representing 9 of 14 genera of Teredinidae, are described. The cells are Gram-negative, rigid, rods (0.4-0.6 x 3-6 microm) that bear a single polar flagellum. All isolates are capable of chemoheterotrophic growth in a simple mineral medium supplemented with cellulose as a sole source of carbon and energy. Xylan, pectin, carboxymethylcellulose, cellobiose and a variety of sugars and organic acids also support growth. Growth requires addition of combined nitrogen when cultures are vigorously aerated, but all isolates fix dinitrogen under microaerobic conditions. The pH, temperature and salinity optima for growth were determined for six isolates and are approximately 8.5, 30-35 degrees C and 0.3 M NaCl respectively. The isolates are marine. In addition to NaCl, growth requires elevated concentrations of Ca2+ and Mg2+ that reflect the chemistry of seawater. The DNA G+C content ranged from 49 to 51 mol%. Four isolates were identical with respect to small-subunit rRNA sequence over 891 positions compared and fall within a unique clade in the gamma-subclass of the Proteobacteria. Based on morphological, physiological and phylogenetic characteristics and specific symbiotic association with teredinid bivalves, a new genus and species, Teredinibacter turnerae gen. nov., sp. nov., is proposed. The type strain is T7902(T) (= ATCC 39867(T) = DSM 15152(T)).
Pharmacogenetics | 2004
Mark E. Hahn; Sibel I. Karchner; Diana G. Franks; Rebeka R. Merson
The aryl hydrocarbon receptor (AHR) gene encodes a ligand-activated transcription factor through which planar halogenated aromatic hydrocarbons (HAHs) such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as well as polynuclear aromatic hydrocarbons (PAHs) cause altered gene expression and toxicity. To understand the role of AHR genetic variability in differential sensitivity to HAHs and PAHs, we are currently studying a population of the teleost Fundulus heteroclitus (Atlantic killifish) that has evolved genetic resistance to the toxic and biochemical effects of these compounds. Here, we report that the killifish AHR1 locus is highly polymorphic and that the frequencies of the major allele types differ between dioxin-sensitive and dioxin-resistant populations. Twenty-five single nucleotide polymorphisms (SNPs), nine of which are non-synonymous, were identified in the AHR1 coding sequence. Seven identified alleles were assigned to three groups, designated AHR1*1, AHR1*2 and AHR1*3. AHR1*1 alleles were under-represented in a population of dioxin- and polychlorinated biphenyl (PCB)-resistant fish from a PCB-contaminated Superfund site (New Bedford Harbor, Massachusetts, USA) compared to dioxin-sensitive fish from a less contaminated reference site (Scorton Creek, Massachusetts, USA). To determine the possible role of these AHR1 variants in differential HAH sensitivity, we expressed representative variant proteins from the two most divergent allelic groups (AHR1*1 and AHR1*3) by in-vitro transcription and translation and assessed their functional properties. AHR1*1A and AHR1*3A proteins displayed similar binding capacities and affinities for [H]TCDD. In transient transfection assays using mammalian cells, AHR1*1A and AHR1*3A exhibited similar abilities to support TCDD-dependent transactivation of a luciferase reporter gene under control of AHR-responsive enhancer elements. We discuss the possibility of other functional differences in AHR1 variants or their interaction with other killifish loci (AHR2, AHRR) that may contribute to differences in dioxin sensitivity.
Chemico-Biological Interactions | 2009
Maria Jonsson; Diana G. Franks; Matthew J. Jenny; Rita Anne Garrick; Lars Behrendt; Mark E. Hahn; John J. Stegeman
The tryptophan photooxidation product 6-formylindolo[3,2-b]carbazole (FICZ) has been proposed as a physiological ligand for the mammalian aryl hydrocarbon receptor (AHR), which it binds with high-affinity, inducing expression of cytochrome P450 1A1 (CYP1A1). We investigated whether the response to FICZ is evolutionarily conserved in vertebrates by measuring FICZ binding to two zebrafish AHRs (AHR1B and AHR2) and its ability to induce zebrafish CYP1 genes (CYP1A, CYP1B1, CYP1C1, CYP1C2, and CYP1D1) in vivo. Exposure of zebrafish embryos (48 h-post-fertilization; hpf) to 10 nM FICZ for 6h caused strong induction of CYP1A mRNA and a statistically significant but modest induction of CYP1B1 and CYP1C1. Neither CYP1C2 nor CYP1D1 expression was induced by FICZ under the conditions of dose, time or developmental stage examined here. CYP1A induction was significantly greater after 6 h than after 12 h of exposure to FICZ, suggesting a rapid degradation of inducer. The 6-h EC(50) values for induction of CYP1A and CYP1B1 by FICZ were 0.6 and 0.5 nM compared to 72-h EC(50) values of 2.3 and 2.7 nM for PCB126, indicating that in zebrafish embryos FICZ is a more potent inducer than PCB126. FICZ at 10 nM was able to completely displace binding of 2,3,7,8-tetrachloro-1,6[3H]-dibenzo-p-dioxin to in vitro-expressed zebrafish AHR2 and AHR1B. Inhibition of AHR2 translation in zebrafish embryos by an AHR2-specific morpholino antisense oligonucleotide decreased the induction of CYP1A and CYP1B1 by FICZ and by PCB126. Together, these results demonstrate that FICZ is a potent AHR agonist in zebrafish, inducing expression of multiple CYP1 genes largely through AHR2. Evolutionary conservation of the response to FICZ is consistent with a possible role as an endogenous signaling molecule acting through the AHR.
PLOS ONE | 2014
Margaret M. Lowe; Jeff E. Mold; Bittoo Kanwar; Yong Huang; Alexander Louie; Cuihua Wang; Gautam Patel; Diana G. Franks; Jennifer J. Schlezinger; David H. Sherr; Allen E. Silverstone; Mark E. Hahn; Joseph M. McCune
The aryl hydrocarbon receptor (AHR) binds to environmental toxicants including synthetic halogenated aromatic hydrocarbons and is involved in a diverse array of biological processes. Recently, the AHR was shown to control host immunity by affecting the balance between inflammatory T cells that produce IL-17 (Th17) and IL-22 versus regulatory T cells (Treg) involved in tolerance. While environmental AHR ligands can mediate this effect, endogenous ligands are likely to be more relevant in host immune responses. We investigated downstream metabolites of tryptophan as potential AHR ligands because (1) tryptophan metabolites have been implicated in regulating the balance between Th17 and Treg cells and (2) many of the AHR ligands identified thus far are derivatives of tryptophan. We characterized the ability of tryptophan metabolites to bind and activate the AHR and to increase IL-22 production in human T cells. We report that the tryptophan metabolite, cinnabarinic acid (CA), is an AHR ligand that stimulates the differentiation of human and mouse T cells producing IL-22. We compare the IL-22-stimulating activity of CA to that of other tryptophan metabolites and define stimulation conditions that lead to CA production from immune cells. Our findings link tryptophan metabolism to AHR activation and define a novel endogenous AHR agonist with potentially broad biological functions.
Journal of Biological Chemistry | 2012
Alicia R. Timme-Laragy; Sibel I. Karchner; Diana G. Franks; Matthew J. Jenny; Rachel C. Harbeitner; Jared V. Goldstone; Andrew G. McArthur; Mark E. Hahn
Background: NRF2 is a transcription factor that regulates the oxidative stress response. Results: Zebrafish have duplicate nrf2 genes, nrf2a and nrf2b, with distinct functions during embryonic development. Conclusion: nrf2a and nrf2b have undergone subfunction partitioning; Nrf2b is a negative regulator of embryonic gene expression. Significance: Duplicate zebrafish nrf2 genes provide opportunities for new insights into developmental roles of NRF2. NF-E2-related factor 2 (NRF2; also called NFE2L2) and related NRF family members regulate antioxidant defenses by activating gene expression via antioxidant response elements (AREs), but their roles in embryonic development are not well understood. We report here that zebrafish (Danio rerio), an important developmental model species, possesses six nrf genes, including duplicated nrf1 and nrf2 genes. We cloned a novel zebrafish nrf2 paralog, nrf2b. The predicted Nrf2b protein sequence shares several domains with the original Nrf2 (now Nrf2a) but lacks the Neh4 transactivation domain. Zebrafish-human comparisons demonstrate conserved synteny involving nrf2 and hox genes, indicating that nrf2a and nrf2b are co-orthologs of human NRF2. nrf2a and nrf2b displayed distinct patterns of expression during embryonic development; nrf2b was more highly expressed at all stages. Embryos in which Nrf2a expression had been knocked down with morpholino oligonucleotides were more sensitive to tert-butylhydroperoxide but not tert-butylhydroquinone, whereas knockdown of Nrf2b did not affect sensitivity of embryos to either chemical. Gene expression profiling by microarray identified a specific role for Nrf2b as a negative regulator of several genes, including p53, cyclin G1, and heme oxygenase 1, in embryos. Nrf2a and Nrf2b exhibited different mechanisms of cross-talk with the Ahr2 signaling pathway. Together, these results demonstrate distinct roles for nrf2a and nrf2b, consistent with subfunction partitioning, and identify a novel negative regulatory role for Nrf2b during development. The identification of zebrafish nrf2 co-orthologs will facilitate new understanding of the multiple roles of NRF2 in protecting vertebrate embryos from oxidative damage.
Toxicological Sciences | 2009
Matthew J. Jenny; Sibel I. Karchner; Diana G. Franks; John J. Stegeman; Mark E. Hahn
The aryl hydrocarbon receptor (AHR) repressor (AHRR), an AHR-related basic helix-loop-helix/Per-AHR nuclear translocator-Sim protein, is regulated by an AHR-dependent mechanism and acts as a transcriptional repressor of AHR function. Resulting from a teleost-specific genome duplication, zebrafish have two AHRR genes (AHRRa and AHRRb), but their functions in vivo are not well understood. We used antisense morpholino oligonucleotides (MOs) in zebrafish embryos and a zebrafish liver cell line (ZF-L) to characterize the interaction of AHRRs and AHRs in normal embryonic development, AHR signaling, and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity. Zebrafish embryos exposed to TCDD (2 and 8nM) during early development showed strong induction of CYP1A, AHRRa, and AHRRb at 48 and 72 hours post-fertilization (hpf). An MO targeting AHR2 inhibited TCDD-induced expression of CYP1A, AHRRa, and AHRRb by 84-95% in 48 hpf embryos, demonstrating a primary role for AHR2 in mediating AHRR induction. Dual MO knockdown of both AHRRs in ZF-L cells enhanced TCDD induction of CYP1A, but not other CYP1 genes. In embryos, dual knockdown of AHRRs, or knockdown of AHRRb alone, enhanced the induction of CYP1A, CYP1B1, and CYP1C1 by TCDD and decreased the constitutive expression of Sox9b. In contrast, knockdown of AHRRa did not affect Sox9b expression or CYP1 inducibility. Embryos microinjected with each of two different MOs targeting AHRRa and exposed to dimethyl sulfoxide (DMSO) displayed developmental phenotypes resembling those typical of TCDD-exposed embryos (pericardial edema and lower jaw malformations). In contrast, no developmental phenotypes were observed in DMSO-exposed AHRRb morphants. These data demonstrate distinct roles of AHRRa and AHRRb in regulating AHR signaling in vivo and suggest that they have undergone subfunction partitioning since the teleost-specific genome duplication.