Diana L Bull
Sandia National Laboratories
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Diana L Bull.
oceans conference | 2012
Kelley Ruehl; Diana L Bull
In order to promote and support development of the wave energy industry, Sandia National Laboratories (SNL) has developed a Wave Energy Development Roadmap. The Wave Energy Development Roadmap outlines the pathway from initial design to commercialization for Wave Energy Converter (WEC) technologies. Commercialization of a wave energy technology is embodied in the deployment of an array of WECs, a WEC Farm. The development process is related to the commonly used metric of Technology Readiness Levels (TRLs). The roadmap incorporates modeling and experimental expectations at corresponding TRLs which provide a guide for the industry to pursue successful design optimizations, prototype deployments, and utility scale commercialization. The roadmap serves the additional purpose of pinpointing research gaps in the development process.
Archive | 2014
Christopher S. Smith; Diana L Bull; Steven M. Willits; Arnold Fontaine
This paper presents work completed by The Applied Research Laboratory at The Pennsylvania State University, in conjunction with Sandia National Labs, on the optimization of the power conversion chain (PCC) design to maximize the Average Annual Electric Power (AAEP) output of an Oscillating Water Column (OWC) device. The design consists of two independent stages. First, the design of a floating OWC, a Backward Bent Duct Buoy (BBDB), and second the design of the PCC. The pneumatic power output of the BBDB in random waves is optimized through the use of a hydrodynamically coupled, linear, frequencydomain, performance model that links the oscillating structure to internal air-pressure fluctuations. The PCC optimization is centered on the selection and sizing of a Wells Turbine and electric power generation equipment. The optimization of the PCC involves the following variables: the type of Wells Turbine (fixed or variable pitched, with and without guide vanes), the radius of the turbine, the optimal vent pressure, and the sizing of the power electronics.
Archive | 2014
Diana L Bull; Matthew J. Fowler; Andrew J. Goupee
This analysis utilizes a 5 - MW VAWT topside design envelope created by Sandia National Laborator ies to compare floating platform options fo r each turbine in the design space. The platform designs are based on two existing designs, the OC3 Hywind spar - buoy and Principal Powers WindFloat semi - submersible. These designs are scaled using Froude - scaling relationships to determine an appropriately sized spar - buoy and semi - submersible design for each topside. Both the physical size of the required platform as well as mooring configurations are considered. Results are compared with a comparable 5 - MW HAWT in order to identify potential differences in the platform and mooring sizing between the VAWT and HAWT . The study shows that there is potential for cost savings due to reduced platform size requirements for the VAWT.
oceans conference | 2014
Ryan Geoffrey Coe; Diana L Bull
A nonlinear three-dimensional time-domain performance model has been developed for a floating axisymmetric point absorbing WEC. This model employs a set of linear partial differential equations, in the form of a state-space model, to replace the convolution integrals needed to solve for radiation reaction. Linear time-domain results are verified against predictions from a frequency-domain model. Nonlinear time-domain predictions are compared back to frequency-domain and linear time-domain predictions to show the effects of some linearization assumptions. A simple resistive control strategy is applied throughout these scenarios.
ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering | 2015
Ryan Geoffrey Coe; Diana L Bull
A three dimensional time-domain model, based on Cummins equation, has been developed for an axisymmetric point absorbing wave energy converter (WEC) with an irregular cross section. This model incorporates a number of nonlinearities to accurately account for the dynamics of the device: hydrostatic restoring, motion constraints, saturation of the power-take-off force, and kinematic nonlinearities. Here, an interpolation model of the hydrostatic restoring reaction is developed and compared with a surface integral based method. The effects of these nonlinear hydrostatic models on device dynamics are explored by comparing predictions against those of a linear model. For the studied WEC, the interpolation model offers a large improvement over a linear model and is roughly two orders-of-magnitude less computationally expensive than the surface integral based method.Copyright
Archive | 2014
Guild Copeland; Diana L Bull; Richard Alan Jepsen; Margaret Ellen Gordon
An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.
ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering | 2014
Matthew J. Fowler; Brian C. Owens; Diana L Bull; Andrew J. Goupee; John E. Hurtado; D. Todd Griffith; Marco Alves
When considering the future of offshore wind energy, developing cost effective methods of harnessing the offshore wind resource represents a significant challenge which must be overcome to make offshore wind a viable option. As the majority of the capital investment in offshore wind is in the form of infrastructure and operation and maintenance costs, reducing these expenditures could greatly reduce the cost of energy (COE) for an offshore wind project. Sandia National Laboratory and its partners (TU Delft, University of Maine, Iowa State, and TPI Composites) believe that vertical axis wind turbines (VAWTs) offer multiple advantages over other rotor configurations considering this new COE breakdown. The unique arrangement of a VAWT allows the heavy generator and related components to be located at the base of the tower as opposed to the top, as is typical of a horizontal axis wind turbine (HAWT). This configuration lowers the topside CG which reduces the platform stability requirements, leading to smaller and cheaper platforms. Additionally this locates high maintenance systems close to the ocean surface thus increasing maintainability. To support this project and the general wind research community, the Offshore Wind ENergy Simulation (OWENS) toolkit is being developed in conjunction with Texas A&M as an open source, modular aero-elastic analysis code with the capability to analyze floating VAWTS. The OWENS toolkit aims to establish a robust and flexible finite element framework and VAWT mesh generation utility, coupled with a modular interface that allows users to integrate easily with existing codes, such as aerodynamic and hydrodynamic codes.Current efforts to include a hydrodynamic module are focused on coupling WavEC2Wire with OWENS. WavEC2Wire is a wave-to-wire numerical model developed by Marco Alves at the Insituto Superior Tecnico for the analysis of wave energy converter devices. It has been adapted from its original form and restructured for use as a hydrodynamic module capable of providing OWENS with necessary floating platform dynamics. Hence, WavEC2Wire functions as a rigid-body solver designed to calculate the platform motion due to wave loads, moorings, and the influence of the attached VAWT and tower. This paper presents the WavEC2Wire module and details the OWENS coupling method. Additionally, planned improvements in the WavEC2Wire module as well as future development in OWENS are presented.Copyright
Archive | 2018
Daniel Griffith; Matthew F. Barone; Joshua A. Paquette; Brian C. Owens; Diana L Bull; Carlos Simao-Ferriera; Andrew J. Goupee; Matt Fowler
Deep-water offshore sites are an untapped opportunity to bring large-scale offshore wind energy to coastal population centers. The primary challenge has been the projected high costs for floating offshore wind systems. This work presents a comprehensive investigation of a new opportunity for deep-water offshore wind using large-scale vertical axis wind turbines. Owing to inherent features of this technology, there is a potential transformational opportunity to address the major cost drivers for floating wind using vertical axis wind turbines. The focus of this report is to evaluate the technical potential for this new technology. The approach to evaluating this potential was to perform system design studies focused on improving the understanding of technical performance parameters while looking for cost reduction opportunities. VAWT design codes were developed in order to perform these design studies. To gain a better understanding of the design space for floating VAWT systems, a comprehensive design study of multiple rotor configuration options was carried out. Floating platforms and moorings were then sized and evaluated for each of the candidate rotor configurations. Preliminary LCOE estimates and LCOE ranges were produced based on the design study results for each of the major turbine and system components. The major outcomes of this study are a comprehensive technology assessment of VAWT performance and preliminary LCOE estimates that demonstrate that floating VAWTs may have favorable performance and costs in comparison to conventional HAWTs in the deep-water offshore environment where floating systems are required, indicating that this new technology warrants further study.
Journal of Physics: Conference Series | 2016
D. Todd Griffith; Joshua A. Paquette; Matthew F. Barone; Andrew J. Goupee; Matthew J. Fowler; Diana L Bull; Brian C. Owens
Vertical axis wind turbines are receiving significant attention for offshore siting. In general, offshore wind offers proximity to large populations centers, a vast & more consistent wind resource, and a scale-up opportunity, to name a few beneficial characteristics. On the other hand, offshore wind suffers from high levelized cost of energy (LCOE) and in particular high balance of system (BoS) costs owing to accessibility challenges and limited project experience. To address these challenges associated with offshore wind, Sandia National Laboratories is researching large-scale (MW class) offshore floating vertical axis wind turbines (VAWTs). The motivation for this work is that floating VAWTs are a potential transformative technology solution to reduce offshore wind LCOE in deep-water locations. This paper explores performance and cost trade-offs within the design space for floating VAWTs between the configurations for the rotor and platform.
oceans conference | 2012
Diana L Bull; Paul Jacob