Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diana Lousa is active.

Publication


Featured researches published by Diana Lousa.


Journal of Chemical Information and Modeling | 2012

Analyzing the molecular basis of enzyme stability in ethanol/water mixtures using molecular dynamics simulations.

Diana Lousa; António M. Baptista; Cláudio M. Soares

One of the drawbacks of nonaqueous enzymology is the fact that enzymes tend to be less stable in organic solvents than in water. There are, however, some enzymes that display very high stabilities in nonaqueous media. In order to take full advantage of the use of nonaqueous solvents in enzyme catalysis, it is essential to elucidate the molecular basis of enzyme stability in these media. Toward this end, we performed μs-long molecular dynamics simulations using two homologous proteases, pseudolysin, and thermolysin, which are known to have considerably different stabilities in solutions containing ethanol. The analysis of the simulations indicates that pseudolysin is more stable than thermolysin in ethanol/water mixtures and that the disulfide bridge between C30 and C58 is important for the stability of the former enzyme, which is consistent with previous experimental observations. Our results indicate that thermolysin has a higher tendency to interact with ethanol molecules (especially through van der Waals contacts) than pseudolysin, which can lead to the disruption of intraprotein hydrophobic interactions and ultimately result in protein unfolding. In the absence of the C30-C58 disulfide bridge, pseudolysin undergoes larger conformational changes, becoming more open and more permeable to ethanol molecules which accumulate in its interior and form hydrophobic interactions with the enzyme, destroying its structure. Our observations are not only in good agreement with several previous experimental findings on the stability of the enzymes studied in ethanol/water mixtures but also give an insight on the molecular determinants of this stability. Our findings may, therefore, be useful in the rational development of enzymes with increased stability in these media.


Journal of Chemical Theory and Computation | 2013

Predicting the Thermodynamics and Kinetics of Helix Formation in a Cyclic Peptide Model

João M. Damas; Luís C. S. Filipe; Sara R. R. Campos; Diana Lousa; Bruno L. Victor; António M. Baptista; Cláudio M. Soares

The peptide Ac-(cyclo-2,6)-R[KAAAD]-NH2 (cyc-RKAAAD) is a short cyclic peptide known to adopt a remarkably stable single turn α-helix in water. Due to its simplicity and the availability of thermodynamic and kinetic experimental data, cyc-RKAAAD poses as an ideal model for evaluating the aptness of current molecular dynamics (MD) simulation methodologies to accurately sample conformations that reproduce experimentally observed properties. In this work, we extensively sample the conformational space of cyc-RKAAAD using microsecond-timescale MD simulations. We characterize the peptide conformational preferences in terms of secondary structure propensities and, using Cartesian-coordinate principal component analysis (cPCA), construct its free energy landscape, thus obtaining a detailed weighted discrimination between the helical and nonhelical subensembles. The cPCA state discrimination, together with a Markov model built from it, allowed us to estimate the free energy of unfolding (-0.57 kJ/mol) and the relaxation time (∼0.435 μs) at 298.15 K, which are in excellent agreement with the experimentally reported values (-0.22 kJ/mol and 0.42 μs, Serrano, A. L.; Tucker, M. J.; Gai, F. J. Phys. Chem. B, 2011, 115, 7472-7478.). Additionally, we present simulations conducted using two enhanced sampling methods: replica-exchange molecular dynamics (REMD) and bias-exchange metadynamics (BE-MetaD). We compare the free energy landscape obtained by these two methods with the results from MD simulations and discuss the sampling and computational gains achieved. Overall, the results obtained attest to the suitability of modern simulation methods to explore the conformational behavior of peptide systems with a high level of realism.


Protein Science | 2011

Structural determinants of ligand imprinting: A molecular dynamics simulation study of subtilisin in aqueous and apolar solvents

Diana Lousa; António M. Baptista; Cláudio M. Soares

The phenomenon known as “ligand imprinting” or “ligand‐induced enzyme memory” was first reported in 1988, when Russell and Klibanov observed that lyophilizing subtilisin in the presence of competitive inhibitors (that were subsequently removed) could significantly enhance its activity in an apolar solvent. (Russell and Klibanov, J Biol Chem 1988;263:11624‐11626). They further observed that this enhancement did not occur when similar assays were carried out in water. Herein, we shed light on the molecular determinants of ligand imprinting using a molecular dynamics (MD) approach. To simulate the effect of placing an enzyme in the presence of a ligand before its lyophilization, an inhibitor was docked in the active site of subtilisin and 20 ns MD simulations in water were performed. The ligand was then removed and the resulting structure was used for subsequent MD runs using hexane and water as solvents. As a control, the same simulation setup was applied using the structure of subtilisin in the absence of the inhibitor. We observed that the ligand maintains the active site in an open conformation and that this configuration is retained after the removal of the inhibitor, when the simulations are carried out in hexane. In agreement with experimental findings, the structural configuration induced by the ligand is lost when the simulations take place in water. Our analysis of fluctuations indicates that this behavior is a result of the decreased flexibility displayed by enzymes in an apolar solvent, relatively to the aqueous situation.


Journal of Chemical Information and Modeling | 2015

Self-assembly molecular dynamics simulations shed light into the interaction of the influenza fusion Peptide with a membrane bilayer.

Bruno L. Victor; Diana Lousa; Jorge M. Antunes; Cláudio M. Soares

Influenza virus is one of the most devastating human pathogens. In order to infect host cells, this virus fuses its membrane with the host membrane in a process mediated by the glycoprotein hemagglutinin. During fusion, the N-terminal region of hemagglutinin, which is known as the fusion peptide (FP), inserts into the host membrane, promoting lipid mixing between the viral and host membranes. Therefore, this peptide plays a key role in the fusion process, but the exact mechanism by which it promotes lipid mixing is still unclear. To shed light into this matter, we performed molecular dynamics (MD) simulations of the influenza FP in different environments (water, dodecylphosphocholine (DPC) micelles, and a dimyristoylphosphatidylcholine (DMPC) membrane). While in pure water the peptide lost its initial secondary structure, in simulations performed in the presence of DPC micelles it remained stable, in agreement with previous experimental observations. In simulations performed in the presence of a preassembled DMPC bilayer, the peptide became unstructured and was unable to insert into the membrane as a result of technical limitations of the method used. To overcome this problem, we used a self-assembly strategy, assembling the membrane together with the peptide. These simulations revealed that the peptide can adopt a membrane-spanning conformation, which had not been predicted by previous MD simulation studies. The peptide insertion had a strong effect on the membrane, lowering the bilayer thickness, disordering nearby lipids, and promoting lipid tail protrusion. These results contribute to a better understanding of the role of the FP in the fusion process.


Biochemistry | 2015

Structural and Functional Characterization of an Ancient Bacterial Transglutaminase Sheds Light on the Minimal Requirements for Protein Cross-Linking

Catarina G. Fernandes; Diana Plácido; Diana Lousa; José A. Brito; Anabela Isidro; Cláudio M. Soares; Jan Pohl; Maria Arménia Carrondo; Margarida Archer; Adriano O. Henriques

Transglutaminases are best known for their ability to catalyze protein cross-linking reactions that impart chemical and physical resilience to cellular structures. Here, we report the crystal structure and characterization of Tgl, a transglutaminase from the bacterium Bacillus subtilis. Tgl is produced during sporulation and cross-links the surface of the highly resilient spore. Tgl-like proteins are found only in spore-forming bacteria of the Bacillus and Clostridia classes, indicating an ancient origin. Tgl is a single-domain protein, produced in active form, and the smallest transglutaminase characterized to date. We show that Tgl is structurally similar to bacterial cell wall endopeptidases and has an NlpC/P60 catalytic core, thought to represent the ancestral unit of the cysteine protease fold. We show that Tgl functions through a unique partially redundant catalytic dyad formed by Cys116 and Glu187 or Glu115. Strikingly, the catalytic Cys is insulated within a hydrophobic tunnel that traverses the molecule from side to side. The lack of similarity of Tgl to other transglutaminases together with its small size suggests that an NlpC/P60 catalytic core and insulation of the active site during catalysis may be essential requirements for protein cross-linking.


Journal of Physical Chemistry B | 2012

Interaction of counterions with subtilisin in acetonitrile: insights from molecular dynamics simulations.

Diana Lousa; Michele Cianci; John R. Helliwell; Peter J. Halling; António M. Baptista; Cláudio M. Soares

A recent X-ray structure has enabled the location of chloride and cesium ions on the surface of subtilisin Carlsberg in acetonitrile soaked crystals. (1) To complement the previous study and analyze the system in solution, molecular dynamics (MD) simulations, in acetonitrile, were performed using this structure. Additionally, Cl(-) and Cs(+) ions were docked on the protein surface and this system was also simulated. Our results indicate that chloride ions tend to stay close to the protein, whereas cesium ions frequently migrate to the solvent. The distribution of the ions around the enzyme surface is not strongly biased by their initial locations. Replacing cesium by sodium ions showed that the distribution of the two cations is similar, indicating that Cs(+) can be used to find the binding sites of cations like Na(+) and K(+), which, unlike Cs(+), have physiological and biotechnological roles. The Na(+)Cl(-) is more stable than the Cs(+)Cl(-) ion pair, decreasing the probability of interaction between Cl(-) and subtilisin. The comparison of water and acetonitrile simulations indicates that the solvent influences the distribution of the ions. This work provides an extensive theoretical analysis of the interaction between ions and the model enzyme subtilisin in a nonaqueous medium.


FEBS Letters | 2015

Insights into the structure of the diiron site of RIC from Escherichia coli

Lígia S. Nobre; Diana Lousa; Isabel Pacheco; Cláudio M. Soares; Miguel Teixeira; Lígia M. Saraiva

Repair of Iron Centres (RICs) are a widely‐spread family of diiron proteins involved in the protection of iron–sulphur‐containing enzymes from nitrosative and oxidative stress. Here, homology‐based modelling was used to predict putative ligands of the RIC diiron centre in E. coli. Site‐directed mutagenesis studies showed that several conserved residues modulate the spectroscopic properties of the diiron centre, and mutations in H129, E133 and E208 abrogated RIC ability to protect aconitase. Taken together, these data led to a structural model of a diiron centre inserted in a four‐helix bundle fold and coordinated by H84, H129, H160, H204, E133 and E208. Moreover, two μ‐carboxylate bridges involving E133 and E208 were found to be required for assembly of a stable diiron centre.


Scientific Reports | 2016

Fusing simulation and experiment: The effect of mutations on the structure and activity of the influenza fusion peptide

Diana Lousa; Antónia R. T. Pinto; Bruno L. Victor; Alessandro Laio; Ana Salomé Veiga; Miguel A. R. B. Castanho; Cláudio M. Soares

During the infection process, the influenza fusion peptide (FP) inserts into the host membrane, playing a crucial role in the fusion process between the viral and host membranes. In this work we used a combination of simulation and experimental techniques to analyse the molecular details of this process, which are largely unknown. Although the FP structure has been obtained by NMR in detergent micelles, there is no atomic structure information in membranes. To answer this question, we performed bias-exchange metadynamics (BE-META) simulations, which showed that the lowest energy states of the membrane-inserted FP correspond to helical-hairpin conformations similar to that observed in micelles. BE-META simulations of the G1V, W14A, G12A/G13A and G4A/G8A/G16A/G20A mutants revealed that all the mutations affect the peptide’s free energy landscape. A FRET-based analysis showed that all the mutants had a reduced fusogenic activity relative to the WT, in particular the mutants G12A/G13A and G4A/G8A/G16A/G20A. According to our results, one of the major causes of the lower activity of these mutants is their lower membrane affinity, which results in a lower concentration of peptide in the bilayer. These findings contribute to a better understanding of the influenza fusion process and open new routes for future studies.


PLOS ONE | 2018

Study of the interactions of bovine serum albumin with a molybdenum(II) carbonyl complex by spectroscopic and molecular simulation methods

Hélia Jeremias; Diana Lousa; Axel Hollmann; Ana C. Coelho; Carla S. A. Baltazar; João Seixas; Ana R. Marques; N. C. Santos; Carlos C. Romão; Cláudio M. Soares

Therapy with inhaled carbon monoxide (CO) is being tested in human clinical trials, yet the alternative use of prodrugs, CO-Releasing Molecules (CORMs), is conceptually advantageous. These molecules are designed to release carbon monoxide in specific tissues, in response to some locally expressed stimulus, where CO can trigger a cytoprotective response. The design of such prodrugs, mostly metal carbonyl complexes, must consider their ADMET profiles, including their interaction with transport plasma proteins. However, the molecular details of this interaction remain elusive. To shed light into this matter, we focused on the CORM prototype [Mo(η5-Cp)(CH2COOH)(CO)3] (ALF414) and performed a detailed molecular characterization of its interaction with bovine serum albumin (BSA), using spectroscopic and computational methods. The experimental results show that ALF414 partially quenches the intrinsic fluorescence of BSA without changing its secondary structure. The interaction between BSA and ALF414 follows a dynamic quenching mechanism, indicating that no stable complex is formed between the protein Trp residues and ALF414. The molecular dynamics simulations are in good agreement with the experimental results and confirm the dynamic and unspecific character of the interaction between ALF414 and BSA. The simulations also provide important insights into the nature of the interactions of this CORM prototype with BSA, which are dominated by hydrophobic contacts, with a contribution from hydrogen bonding. This kind of information is useful for future CORM design.


International Journal of Molecular Sciences | 2018

AOX1-Subfamily Gene Members in Olea europaea cv. “Galega Vulgar”—Gene Characterization and Expression of Transcripts during IBA-Induced in Vitro Adventitious Rooting

Isabel Velada; Diana Lousa; Cláudio M. Soares; Elisete Santos Macedo; Augusto Peixe; Birgit Arnholdt-Schmitt; Hélia Guerra Cardoso

Propagation of some Olea europaea L. cultivars is strongly limited due to recalcitrant behavior in adventitious root formation by semi-hardwood cuttings. One example is the cultivar ”Galega vulgar”. The formation of adventitious roots is considered a morphological response to stress. Alternative oxidase (AOX) is the terminal oxidase of the alternative pathway of the plant mitochondrial electron transport chain. This enzyme is well known to be induced in response to several biotic and abiotic stress situations. This work aimed to characterize the alternative oxidase 1 (AOX1)-subfamily in olive and to analyze the expression of transcripts during the indole-3-butyric acid (IBA)-induced in vitro adventitious rooting (AR) process. OeAOX1a (acc. no. MF410318) and OeAOX1d (acc. no. MF410319) were identified, as well as different transcript variants for both genes which resulted from alternative polyadenylation events. A correlation between transcript accumulation of both OeAOX1a and OeAOX1d transcripts and the three distinct phases (induction, initiation, and expression) of the AR process in olive was observed. Olive AOX1 genes seem to be associated with the induction and development of adventitious roots in IBA-treated explants. A better understanding of the molecular mechanisms underlying the stimulus needed for the induction of adventitious roots may help to develop more targeted and effective rooting induction protocols in order to improve the rooting ability of difficult-to-root cultivars.

Collaboration


Dive into the Diana Lousa's collaboration.

Top Co-Authors

Avatar

Cláudio M. Soares

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

António M. Baptista

Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Bruno L. Victor

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Ana Salomé Veiga

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar

Antónia R. T. Pinto

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar

Miguel A. R. B. Castanho

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar

Adriano O. Henriques

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Anabela Isidro

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Bruno L. Victor

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Carlos C. Romão

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge