Diana Magens
Alfred Wegener Institute for Polar and Marine Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Diana Magens.
Nature | 2009
Tim R. Naish; Ross D. Powell; R. H. Levy; Gary S. Wilson; Reed P. Scherer; Franco Maria Talarico; Lawrence A. Krissek; Frank Niessen; M. Pompilio; T. J. Wilson; Lionel Carter; Robert M. DeConto; Peter John Huybers; Robert McKay; David Pollard; J. Ross; D. M. Winter; P. J. Barrett; G. H. Browne; Rosemary Cody; Ellen A. Cowan; James S. Crampton; Gavin B. Dunbar; Nelia W. Dunbar; Fabio Florindo; Catalina Gebhardt; Ian J. Graham; M. Hannah; Dhiresh Hansaraj; David M. Harwood
Thirty years after oxygen isotope records from microfossils deposited in ocean sediments confirmed the hypothesis that variations in the Earth’s orbital geometry control the ice ages, fundamental questions remain over the response of the Antarctic ice sheets to orbital cycles. Furthermore, an understanding of the behaviour of the marine-based West Antarctic ice sheet (WAIS) during the ‘warmer-than-present’ early-Pliocene epoch (∼5–3 Myr ago) is needed to better constrain the possible range of ice-sheet behaviour in the context of future global warming. Here we present a marine glacial record from the upper 600 m of the AND-1B sediment core recovered from beneath the northwest part of the Ross ice shelf by the ANDRILL programme and demonstrate well-dated, ∼40-kyr cyclic variations in ice-sheet extent linked to cycles in insolation influenced by changes in the Earth’s axial tilt (obliquity) during the Pliocene. Our data provide direct evidence for orbitally induced oscillations in the WAIS, which periodically collapsed, resulting in a switch from grounded ice, or ice shelves, to open waters in the Ross embayment when planetary temperatures were up to ∼3 °C warmer than today and atmospheric CO2 concentration was as high as ∼400 p.p.m.v. (refs 5, 6). The evidence is consistent with a new ice-sheet/ice-shelf model that simulates fluctuations in Antarctic ice volume of up to +7 m in equivalent sea level associated with the loss of the WAIS and up to +3 m in equivalent sea level from the East Antarctic ice sheet, in response to ocean-induced melting paced by obliquity. During interglacial times, diatomaceous sediments indicate high surface-water productivity, minimal summer sea ice and air temperatures above freezing, suggesting an additional influence of surface melt under conditions of elevated CO2.
Polar Research | 2008
Lutz Schirrmeister; Guido Grosse; V. Kunitsky; Diana Magens; Hanno Meyer; Alexander Yu Dereviagin; T. A. Kuznetsova; Andrei Andreev; Olga Babiy; Frank Kienast; Mikhael Grigoriev; Pier Paul Overduin; Frank Preusser
Non-glaciated Arctic lowlands in north-east Siberia were subjected to extensive landscape and environmental changes during the Late Quaternary. Coastal cliffs along the Arctic shelf seas expose terrestrial archives containing numerous palaeoenvironmental indicators (e.g., pollen, plant macro-fossils and mammal fossils) preserved in the permafrost. The presented sedimentological (grain size, magnetic susceptibility and biogeochemical parameters), cryolithological, geochronological (radiocarbon, accelerator mass spectrometry and infrared-stimulated luminescence), heavy mineral and palaeoecological records from Cape Mamontov Klyk record the environmental dynamics of an Arctic shelf lowland east of the Taymyr Peninsula, and thus, near the eastern edge of the Eurasian ice sheet, over the last 60 Ky. This region is also considered to be the westernmost part of Beringia, the non-glaciated landmass that lay between the Eurasian and the Laurentian ice caps during the Late Pleistocene. Several units and subunits of sand deposits, peat–sand alternations, ice-rich palaeocryosol sequences (Ice Complex) and peaty fillings of thermokarst depressions and valleys were presented. The recorded proxy data sets reflect cold stadial climate conditions between 60 and 50 Kya, moderate inderstadial conditions between 50 and 25 Kya and cold stadial conditions from 25 to 15 Kya. The Late Pleistocene to Holocene transition, including the Allerød warm period, the early to middle Holocene thermal optimum and the late Holocene cooling, are also recorded. Three phases of landscape dynamic (fluvial/alluvial, irregular slope run-off and thermokarst) were presented in a schematic model, and were subsequently correlated with the supraregional environmental history between the Early Weichselian and the Holocene.
Geosphere | 2010
Roger H. Morin; Trevor Williams; Stuart Henrys; Diana Magens; Frank Niessen; Dhiresh Hansaraj
The Antarctic Drilling Program (ANDRILL) successfully drilled and cored a borehole, AND-1B, beneath the McMurdo Ice Shelf and into a fl exural moat basin that surrounds Ross Island. Total drilling depth reached 1285 m below seafl oor (mbsf) with 98 percent core recovery for the detailed study of glacier dynamics. With the goal of obtaining complementary information regarding heat fl ow and permeability, which is vital to understanding the nature of marine hydrogeologic systems, a succession of three temperature logs was recorded over a fi veday span to monitor the gradual thermal recovery toward equilibrium conditions. These data were extrapolated to true, undisturbed temperatures, and they defi ne a linear geothermal gradient of 76.7 K/km from the seafl oor to 647 mbsf. Bulk thermal conductivities of the sedimentary rocks were derived from empirical mixing models and density measurements performed on core, and an average value of 1.5 W/mK ± 10 percent was determined. The corresponding estimate of heat fl ow at this site is 115 mW/m 2 . This value is relatively high but is consistent with other elevated heat-fl ow data associated with the Erebus Volcanic Province. Information regarding the origin and frequency of pathways for subsurface fl uid fl ow is gleaned from drillers’ records, complementary geophysical logs, and core descriptions. Only two prominent permeable zones are identifi ed and these correspond to two markedly different features within the rift basin; one is a distinct lithostratigraphic subunit consisting of a thin lava fl ow and the other is a heavily fractured interval within a single thick subunit.
Geosphere | 2012
Trevor Williams; Roger H. Morin; Richard D. Jarrard; C. L. Jackolski; Stuart Henrys; Frank Niessen; Diana Magens; Gerhard Kuhn; Donata Monien; Ross D. Powell
The ANDRILL (Antarctic Drilling Project) McMurdo Ice Shelf (MIS) project drilled 1285 m of sediment in Hole AND-1B, representing the past 12 m.y. of glacial history. Downhole geophysical logs were acquired to a depth of 1018 mbsf (meters below seafloor), and are complementary to data acquired from the core. The natural gamma radiation (NGR) and magnetic susceptibility logs are particularly useful for understanding lithological and paleoenvironmental change at ANDRILL McMurdo Ice Shelf Hole AND-1B. NGR logs cover the entire interval from the seafloor to 1018 mbsf, and magnetic susceptibility and other logs covered the open hole intervals between 692 and 1018 and 237–342 mbsf. In the upper part of AND-1B, clear alternations between low and high NGR values distinguish between diatomite (lacking minerals containing naturally radioactive K, U, and Th) and diamictite (containing K-bearing clays, K-feldspar, mica, and heavy minerals). In the lower open hole logged section, NGR and magnetic susceptibility can also distinguish claystones (rich in K-bearing clay minerals, relatively low in magnetite) and diamictites (relatively high in magnetite). Sandstones can be distinguished by their high resistivity values in AND-1B. On the basis of these three downhole logs, diamictite, claystones, and sandstones can be predicted correctly for 74% of the 692–1018 mbsf interval. The logs were then used to predict facies for the 6% of this interval that was unrecovered by coring. Given the understanding of the physical property characteristics of different facies, it is also possible to identify subtle changes in lithology from the physical properties and help refine parts of the lithostratigraphy, for example, the varying terrigenous content of diatomites and the transitions from subice diamictite to open-water diatomite.
Geosphere | 2013
Frank Niessen; A.C. Gebhardt; Gerhard Kuhn; Diana Magens; Donata Monien
A study of density and porosity is presented for the 1285-m-long AND-1B core recovered from a flexural moat in the McMurdo Sound (Antarctica) in order to interpret sediment consolidation in an ice-proximal location on the Antarctic shelf. Various lithologies imply environmental changes from open marine to subglacial, and are numerically expressed in high-resolution whole-core wet-bulk density (WBD). Grain density data interpolated from discrete samples range from 2.14 to 3.85 g/cm3 and are used to calculate porosity from WBD in order to avoid the 5�15 overestimation and underestimation of porosities obtained by standard methods. The trend of porosity extends from 0.5 near the top (Pleistocene) to 0.2 at the bottom (Miocene). Porosity fluctuations in different lithologies are superimposed with 0.2�0.3 in sequences younger than ca. 1 Ma and 0.5�0.8 in Pliocene diatomites. The AND-1B porosities and void ratios of Pliocene diatomites and Pleistocene mudstones exhibit a large negative offset compared to modern lithological analogs and their consolidation trends. This offset cannot be explained in terms of the effective stress at the AND-1B site. The effective stress ranges from 0 to 4000 kPa in the upper 600 m, and reaches 13,000 kPa at the base of the AND-1B hole. We suggest an excess of effective overburden stress of �1700 and �6000 kPa to explain porosities in Pliocene diatomites and Pleistocene mudstones, respectively. This is interpreted as glacial preconsolidation by subsequently grounded ice sheets under subpolar to polar, followed by colder polar types of glaciations. Information on Miocene consolidation is sparse due to alteration by diagenesis.
EPIC3Geosphere, GEOLOGICAL SOC AMER, 8(1), pp. 127-140, ISSN: 1553-040X | 2012
Trevor Williams; Roger H. Morin; Richard D. Jarrard; C. L. Jackolski; S. Henrys; Frank Niessen; Diana Magens; Gerhard Kuhn; Donata Monien; Ross D. Powell
The ANDRILL (Antarctic Drilling Project) McMurdo Ice Shelf (MIS) project drilled 1285 m of sediment in Hole AND-1B, representing the past 12 m.y. of glacial history. Downhole geophysical logs were acquired to a depth of 1018 mbsf (meters below seafloor), and are complementary to data acquired from the core. The natural gamma radiation (NGR) and magnetic susceptibility logs are particularly useful for understanding lithological and paleoenvironmental change at ANDRILL McMurdo Ice Shelf Hole AND-1B. NGR logs cover the entire interval from the seafloor to 1018 mbsf, and magnetic susceptibility and other logs covered the open hole intervals between 692 and 1018 and 237–342 mbsf. In the upper part of AND-1B, clear alternations between low and high NGR values distinguish between diatomite (lacking minerals containing naturally radioactive K, U, and Th) and diamictite (containing K-bearing clays, K-feldspar, mica, and heavy minerals). In the lower open hole logged section, NGR and magnetic susceptibility can also distinguish claystones (rich in K-bearing clay minerals, relatively low in magnetite) and diamictites (relatively high in magnetite). Sandstones can be distinguished by their high resistivity values in AND-1B. On the basis of these three downhole logs, diamictite, claystones, and sandstones can be predicted correctly for 74% of the 692–1018 mbsf interval. The logs were then used to predict facies for the 6% of this interval that was unrecovered by coring. Given the understanding of the physical property characteristics of different facies, it is also possible to identify subtle changes in lithology from the physical properties and help refine parts of the lithostratigraphy, for example, the varying terrigenous content of diatomites and the transitions from subice diamictite to open-water diatomite.
Global and Planetary Change | 2012
Gary S. Wilson; R. H. Levy; Tim R. Naish; Ross D. Powell; Fabio Florindo; Christian Ohneiser; Leonardo Sagnotti; D. M. Winter; Rosemary Cody; Stuart Henrys; J. Ross; Larry Krissek; Frank Niessen; Massimo Pompillio; Reed P. Scherer; Brent V. Alloway; P. J. Barrett; Stefanie Ann Brachfeld; Greg H. Browne; Lionel Carter; Ellen A. Cowan; James S. Crampton; Robert M. DeConto; Gavin B. Dunbar; Nelia W. Dunbar; Robert B. Dunbar; Hilmar von Eynatten; Catalina Gebhardt; Giovanna Giorgetti; Ian J. Graham
EPIC3Terra Antartica, 14(3), pp. 155-166 | 2007
Frank Niessen; Diana Magens; A.C. Gebhardt
EPIC3AGU Fall Meeting, December 14-19, San Francisco, USA. | 2008
Gerhard Kuhn; D. Helling; H. von Eynatten; Frank Niessen; Diana Magens
Archive | 2007
Frank Niessen; Diana Magens; Catalina Gebhardt