Diana R. Toledo
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Diana R. Toledo.
Experimental Brain Research | 2014
Diana R. Toledo; José Angelo Barela
Patterns of adaptive changes to the exposure to a sinusoidal visual stimulus can be influenced by stimulus characteristics as well as the integrity of the sensory and motor systems involved in the task. Sensorimotor deficits due to aging might alter postural responses to visual manipulation, especially in more demanding tasks. The purpose of this study was to compare postural control between young and older adults at different levels of complexity and to examine whether possible sensory and/or motor changes account for postural performance differences in older adults. Older and young adults were submitted to the following tests: postural control assessments, i.e., body sway during upright stance and induced by movement of a visual scene (moving room paradigm); sensory assessments, i.e., visual (acuity and contrast sensitivity) and somatosensory (tactile foot sensitivity and detection of passive ankle motion); and motor assessments, i.e., isometric ankle torque and muscular activity latency after stance perturbation. Older adults had worse sensory and motor performance, larger body sway amplitude during stance and stronger coupling between body sway and moving room motion than younger adults. Multiple linear regression analyses indicated that the threshold for the detection of passive ankle motion contributed the most to variances in body sway and this contribution was more striking when visual information was manipulated in a more unpredictable way. The present study suggests that less accurate information about body position is more detrimental to controlling body position, mainly for older adults in more demanding tasks.
Clinical Neurophysiology | 2016
Diana R. Toledo; Gilberto Mastrocola Manzano; José Angelo Barela; André Fabio Kohn
OBJECTIVES The response time (RT) to kinesthetic perception has been used as a proprioceptive measurement, for example, in older individuals. However, the RT cannot provide information on impairments at specific stages of the respective sensorimotor processing. In the present study, electroencephalographic (EEG) signals were recorded during passive ankle movement with and without an associated perceptual task of movement detection. The main purpose was to analyze differences between young and older adults both in terms of RT and cortical responses. Putative differences in the latter were expected to point to changes in the processing associated with neural pathways or cortical regions in the older subjects. METHODS The EEG activity of nineteen older (OA, 65-76 years) and 19 young adults (YA, 21-32 years) was recorded during passive ankle movement, without motor voluntary response (NVR, sensory condition), and during a condition with voluntary motor response (VR, with measurement of the RT). Event-related potentials (ERP) and beta event-related desynchronization/synchronization (ERD/ERS) were recorded and analyzed in both experimental conditions. RESULTS The RT in OA was larger than in YA (P<0.0001). EEG analyses showed that the N1 amplitude was larger in the VR than in the NVR condition (P=0.006), whereas no difference for latency was obtained between conditions (P=0.376). Comparisons between the groups revealed attenuated (P=0.019) and delayed (P=0.001) N1 in the OA group, irrespective of the condition (no interaction group vs condition). Only OA showed correlations between RT and N1, with significant correlation for both amplitude (r=-0.603, P=0.006) and latency (r=0.703, P=0.001). The ERD/ERS analyses revealed a task-dependent group effect: in NVR, significant differences were obtained only for the ERS amplitude, which was attenuated in OA (P=0.003). In VR, larger (P=0.004) and delayed (P=0.003) ERD and attenuated (P=0.029) and delayed (P=0.017) ERS peaks were observed in the older group. CONCLUSIONS The results suggest that a larger response time to proprioceptive stimuli in older adults is associated with a weaker and delayed proprioceptive afferent inflow to the cortex. In this scenario, older adults would need a higher cognitive effort (larger ERD) to process the sensory inputs when attempting to properly perform a sensorimotor task. SIGNIFICANCE ERP and ERD/ERS measurements during kinesthetic assessment provide new insights on identification of the origin of sensorimotor slowing in older adults.
Journal of Neuroengineering and Rehabilitation | 2013
Fernando Henrique Magalhães; Diana R. Toledo; André Fabio Kohn
BackgroundHigh-frequency trains of electrical stimulation applied over the human muscles can generate forces higher than would be expected by direct activation of motor axons, as evidenced by an unexpected relation between the stimuli and the evoked contractions, originating what has been called “extra forces”. This phenomenon has been thought to reflect nonlinear input/output neural properties such as plateau potential activation in motoneurons. However, more recent evidence has indicated that extra forces generated during electrical stimulation are mediated primarily, if not exclusively, by an intrinsic muscle property, and not from a central mechanism as previously thought. Given the inherent differences between electrical and vibratory stimuli, this study aimed to investigate: (a) whether the generation of vibration-induced muscle forces results in an unexpected relation between the stimuli and the evoked contractions (i.e. extra forces generation) and (b) whether these extra forces are accompanied by signs of a centrally-mediated mechanism or whether intrinsic muscle properties are the predominant mechanisms.MethodsSix subjects had their Achilles tendon stimulated by 100 Hz vibratory stimuli that linearly increased in amplitude (with a peak-to-peak displacement varying from 0 to 5 mm) for 10 seconds and then linearly decreased to zero for the next 10 seconds. As a measure of motoneuron excitability taken at different times during the vibratory stimulation, short-latency compound muscle action potentials (V/F-waves) were recorded in the soleus muscle in response to supramaximal nerve stimulation.ResultsPlantar flexion torque and soleus V/F-wave amplitudes were increased in the second half of the stimulation in comparison with the first half.ConclusionThe present findings provide evidence that vibratory stimuli may trigger a centrally-mediated mechanism that contributes to the generation of extra torques. The vibration-induced increased motoneuron excitability (leading to increased torque generation) presumably activates spinal motoneurons following the size principle, which is a desirable feature for stimulation paradigms involved in rehabilitation programs and exercise training.
Neuroscience Letters | 2016
Diana R. Toledo; José Angelo Barela; Gilberto Mastrocola Manzano; André Fabio Kohn
The aim of this work was to compare cortical beta oscillatory activity between young (YA) and older (OA) adults during the assessment of ankle proprioception. We analyzed the response time (RT) to kinesthetic perception and beta event-related desynchronization/synchronization (ERD/ERS) in response to passive ankle movement applied at a slow speed, 0.5°/s. The relationship between ERD/ERS and RT was investigated by classifying the signals into fast-, medium-, and slow-RT. The results showed a temporal relationship between beta oscillation changes and RT for both groups, i.e., earlier ERD and ERS were obtained for trials with faster response time. ERD was larger and delayed in OA compared to the YA, and beta ERS was present only for OA. These findings suggest that a less efficient proprioceptive signaling reaching the brain of OA requires a higher level of brain processing and hence the differences in ERD potentials between YA and OA. Furthermore, the occurrence of ERS in OA might represent a compensatory strategy of active cortical resetting for adequate sensorimotor behavior due to the age-related reduced peripheral input and neuromuscular impairments. Altered balance between excitatory and inhibitory intracortical activity in older adults presumably explains the changes in beta oscillations.
PLOS ONE | 2015
Fernando Henrique Magalhães; Leonardo Abdala Elias; Cristiano Rocha da Silva; Felipe Fava de Lima; Diana R. Toledo; André Fabio Kohn
Presynaptic inhibition (PSI) has been shown to modulate several neuronal pathways of functional relevance by selectively gating the connections between sensory inputs and spinal motoneurons, thereby regulating the contribution of the stretch reflex circuitry to the ongoing motor activity. In this study, we investigated whether a differential regulation of Ia afferent inflow by PSI may be associated with the performance of two types of plantarflexion sensoriomotor tasks. The subjects (in a seated position) controlled either: 1) the force level exerted by the foot against a rigid restraint (force task, FT); or 2) the angular position of the ankle when sustaining inertial loads (position task, PT) that required the same level of muscle activation observed in FT. Subjects were instructed to maintain their force/position at target levels set at ~10% of maximum isometric voluntary contraction for FT and 90° for PT, while visual feedback of the corresponding force/position signals were provided. Unconditioned H-reflexes (i.e. control reflexes) and H-reflexes conditioned by electrical pulses applied to the common peroneal nerve with conditioning-to-test intervals of 21 ms and 100 ms (corresponding to D1 and D2 inhibitions, respectively) were evoked in a random fashion. A significant main effect for the type of the motor task (FT vs PT) (p = 0.005, η2 p = 0.603) indicated that PTs were undertaken with lower levels of Ia PSI converging onto the soleus motoneuron pool. Additionally, a significant interaction between the type of inhibition (D1 vs D2) and the type of motor task (FT vs PT) (p = 0.038, η2 p = 0.395) indicated that D1 inhibition was associated with a significant reduction in PSI levels from TF to TP (p = 0.001, η2 p = 0.731), whereas no significant difference between the tasks was observed for D2 inhibition (p = 0.078, η2 p = 0.305). These results suggest that D1 and D2 inhibitions of the soleus H-reflex are differentially modulated during the performance of plantarflexion FT and PT. The reduced level of ongoing PSI during PT suggests that, in comparison to FT, there is a larger reliance on inputs from muscle spindles primary afferents when the neuromuscular system is required to maintain position-controlled plantarflexion contractions.
Motor Control | 2009
Ana Maria Forti Barela; José Angelo Barela; Natália Madalena Rinaldi; Diana R. Toledo
Neuroscience | 2017
Diana R. Toledo; José Angelo Barela; André Fabio Kohn
Progress in motor control VI | 2007
Ana Maria Forti Barela; Diana R. Toledo; Catarina Oliveira; José Angelo Barela
Brazilian Journal of Motor Behavior | 2015
Ana Maria Forti Barela; Catarina de Oliveira Sousa; Diana R. Toledo; Marcela Regina de Camargo; José A. Barela
Clinical Neurophysiology | 2014
Diana R. Toledo; José Angelo Barela; André Fabio Kohn