Diana S. Nascimento
University of Porto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Diana S. Nascimento.
Stem Cell Research & Therapy | 2014
Diana S. Nascimento; Diogo Mosqueira; Luis Sousa; Mariana Teixeira; Mariana Filipe; Tatiana P. Resende; Ana Francisca Araújo; Mariana Valente; Joana Almeida; José Paulo Martins; Jorge M. Santos; Rita Barcia; Pedro Cruz; Helder Cruz; Perpétua Pinto-do-Ó
IntroductionAmong the plethora of cells under investigation to restore a functional myocardium, mesenchymal stromal cells (MSCs) have been granted considerable interest. However, whereas the beneficial effects of bone marrow MSCs (BM-MSCs) in the context of the diseased heart are widely reported, data are still scarce on MSCs from the umbilical cord matrix (UCM-MSCs). Herein we report on the effect of UCM-MSC transplantation to the infarcted murine heart, seconded by the dissection of the molecular mechanisms at play.MethodsHuman umbilical cord tissue-derived MSCs (UCX®), obtained by using a proprietary technology developed by ECBio, were delivered via intramyocardial injection to C57BL/6 females subjected to permanent ligation of the left descending coronary artery. Moreover, medium produced by cultured UCX® preconditioned under normoxia (CM) or hypoxia (CMH) was collected for subsequent in vitro assays.ResultsEvaluation of the effects upon intramyocardial transplantation shows that UCX® preserved cardiac function and attenuated cardiac remodeling subsequent to myocardial infarction (MI). UCX® further led to increased capillary density and decreased apoptosis in the injured tissue. In vitro, UCX®-conditioned medium displayed (a) proangiogenic activity by promoting the formation of capillary-like structures by human umbilical vein endothelial cells (HUVECs), and (b) antiapoptotic activity in HL-1 cardiomyocytes subjected to hypoxia. Moreover, in adult murine cardiac Sca-1+ progenitor cells (CPCs), conditioned medium enhanced mitogenic activity while activating a gene program characteristic of cardiomyogenic differentiation.ConclusionsUCX® preserve cardiac function after intramyocardial transplantation in a MI murine model. The cardioprotective effects of UCX® were attributed to paracrine mechanisms that appear to enhance angiogenesis, limit the extent of the apoptosis, augment proliferation, and activate a pool of resident CPCs. Overall, these results suggest that UCX® should be considered an alternative cell source when designing new therapeutic approaches to treat MI.
Molecular Microbiology | 2005
Ana do Vale; Manuel T. Silva; Nuno M.S. dos Santos; Diana S. Nascimento; Pedro Reis-Rodrigues; Carolina Costa-Ramos; Anthony E. Ellis; Jorge E. Azevedo
A strategy used by extracellular pathogens to evade phagocytosis is the utilization of exotoxins that kill host phagocytes. We have recently shown that one major pathogenicity strategy of Photobacterium damselae subsp. piscicida (Phdp), the agent of the widespread fish pasteurellosis, is the induction of extensive apoptosis of sea bass macrophages and neutrophils that results in lysis of these phagocytes by post‐apoptotic secondary necrosis. Here we show that this unique process is mediated by a novel plasmid‐encoded apoptosis inducing protein of 56 kDa (AIP56), an exotoxin abundantly secreted by all virulent, but not avirulent, Phdp strains tested. AIP56 is related to an unknown protein of the enterohemorrhagic Escherichia coli O157:H7 and NleC, a Citrobacter rodentium type III secreted effector of unknown function. Passive immunization of sea bass with a rabbit anti‐AIP56 serum conferred protection against Phdp challenge, indicating that AIP56 represents a key virulence factor of that pathogen and is a candidate for the design of an anti‐pasteurellosis vaccine.
Stem Cell Research & Therapy | 2015
Jorge M. Santos; S.P. Camões; Elysse Filipe; Madalena Cipriano; Rita Barcia; Mariana Filipe; Mariana Teixeira; Sandra Simões; Manuela Gaspar; Diogo Mosqueira; Diana S. Nascimento; Perpétua Pinto-do-Ó; Pedro Cruz; Helder Cruz; Matilde Castro; Joana P. Miranda
IntroductionThe secretion of trophic factors by mesenchymal stromal cells has gained increased interest given the benefits it may bring to the treatment of a variety of traumatic injuries such as skin wounds. Herein, we report on a three-dimensional culture-based method to improve the paracrine activity of a specific population of umbilical cord tissue-derived mesenchymal stromal cells (UCX®) towards the application of conditioned medium for the treatment of cutaneous wounds.MethodsA UCX® three-dimensional culture model was developed and characterized with respect to spheroid formation, cell phenotype and cell viability. The secretion by UCX® spheroids of extracellular matrix proteins and trophic factors involved in the wound-healing process was analysed. The skin regenerative potential of UCX® three-dimensional culture-derived conditioned medium (CM3D) was also assessed in vitro and in vivo against UCX® two-dimensional culture-derived conditioned medium (CM2D) using scratch and tubulogenesis assays and a rat wound splinting model, respectively.ResultsUCX® spheroids kept in our three-dimensional system remained viable and multipotent and secreted considerable amounts of vascular endothelial growth factor A, which was undetected in two-dimensional cultures, and higher amounts of matrix metalloproteinase-2, matrix metalloproteinase-9, hepatocyte growth factor, transforming growth factor β1, granulocyte-colony stimulating factor, fibroblast growth factor 2 and interleukin-6, when compared to CM2D. Furthermore, CM3D significantly enhanced elastin production and migration of keratinocytes and fibroblasts in vitro. In turn, tubulogenesis assays revealed increased capillary maturation in the presence of CM3D, as seen by a significant increase in capillary thickness and length when compared to CM2D, and increased branching points and capillary number when compared to basal medium. Finally, CM3D-treated wounds presented signs of faster and better resolution when compared to untreated and CM2D-treated wounds in vivo. Although CM2D proved to be beneficial, CM3D-treated wounds revealed a completely regenerated tissue by day 14 after excisions, with a more mature vascular system already showing glands and hair follicles.ConclusionsThis work unravels an important alternative to the use of cells in the final formulation of advanced therapy medicinal products by providing a proof of concept that a reproducible system for the production of UCX®-conditioned medium can be used to prime a secretome for eventual clinical applications.
Stem Cells and Development | 2014
Mariana Valente; Diana S. Nascimento; Ana Cumano; Perpétua Pinto-do-Ó
The identification, in the adult, of cardiomyocyte turnover events and of cardiac progenitor cells (CPCs) has revolutionized the field of cardiovascular medicine. However, the low rate of CPCs differentiation events reported both in vitro and in vivo, even after injury, raised concerns on the biological significance of these subsets. In this Comprehensive Review, we discuss the current understanding of cardiac Lin(-)Sca-1(+) cells in light of what is also known for cellular compartments with similar phenotypes in other organs. The Lin(-)Sca-1(+) heart subset is heterogeneous and displays a mesenchymal profile, characterized by a limited ability to generate cardiomyocytes in vitro and in vivo, even after injury. There is no evidence for Sca-1 expression in embryonic cardiovascular progenitors. In other organs, Sca-1 expression is mainly observed on mesoderm-derived cells, although it is not restricted to stem/progenitor cell populations. It is urgent to determine, at a single cell level, to which extent cardiac Lin(-)Sca-1(+) cells overlap with the fibroblast compartment.
PLOS ONE | 2011
Diana S. Nascimento; Mariana Valente; Tiago Esteves; Maria de Fátima de Pina; Joana G. Guedes; Ana G. Freire; Pedro Quelhas; Perpétua Pinto-do-Ó
Background The cardiac regenerative potential of newly developed therapies is traditionally evaluated in rodent models of surgically induced myocardial ischemia. A generally accepted key parameter for determining the success of the applied therapy is the infarct size. Although regarded as a gold standard method for infarct size estimation in heart ischemia, histological planimetry is time-consuming and highly variable amongst studies. The purpose of this work is to contribute towards the standardization and simplification of infarct size assessment by providing free access to a novel semi-automated software tool. The acronym MIQuant was attributed to this application. Methodology/Principal Findings Mice were subject to permanent coronary artery ligation and the size of chronic infarcts was estimated by area and midline-length methods using manual planimetry and with MIQuant. Repeatability and reproducibility of MIQuant scores were verified. The validation showed high correlation (r midline length = 0.981; r area = 0.970 ) and agreement (Bland-Altman analysis), free from bias for midline length and negligible bias of 1.21% to 3.72% for area quantification. Further analysis demonstrated that MIQuant reduced by 4.5-fold the time spent on the analysis and, importantly, MIQuant effectiveness is independent of user proficiency. The results indicate that MIQuant can be regarded as a better alternative to manual measurement. Conclusions We conclude that MIQuant is a reliable and an easy-to-use software for infarct size quantification. The widespread use of MIQuant will contribute towards the standardization of infarct size assessment across studies and, therefore, to the systematization of the evaluation of cardiac regenerative potential of emerging therapies.
Cardiovascular Research | 2017
Teresa M. Ribeiro-Rodrigues; Tiago L. Laundos; Rita Pereira-Carvalho; Daniela Batista-Almeida; Ricardo Pereira; Vanessa Coelho-Santos; Ana P. Silva; Rosa Fernandes; Mónica Zuzarte; Francisco J. Enguita; Marina C. Costa; Perpétua Pinto-do-Ó; Marta Pinto; Pedro Gouveia; Lino Ferreira; Justin C. Mason; Paulo Pereira; Brenda R. Kwak; Diana S. Nascimento; Henrique Girão
Aims Myocardial infarction (MI) is the leading cause of morbidity and mortality worldwide and results from an obstruction in the blood supply to a region of the heart. In an attempt to replenish oxygen and nutrients to the deprived area, affected cells release signals to promote the development of new vessels and confer protection against MI. However, the mechanisms underlying the growth of new vessels in an ischaemic scenario remain poorly understood. Here, we show that cardiomyocytes subjected to ischaemia release exosomes that elicit an angiogenic response of endothelial cells (ECs). Methods and results Exosomes secreted by H9c2 myocardial cells and primary cardiomyocytes, cultured either in control or ischaemic conditions were isolated and added to ECs. We show that ischaemic exosomes, in comparison with control exosomes, confer protection against oxidative-induced lesion, promote proliferation, and sprouting of ECs, stimulate the formation of capillary-like structures and strengthen adhesion complexes and barrier properties. Moreover, ischaemic exosomes display higher levels of metalloproteases (MMP) and promote the secretion of MMP by ECs. We demonstrate that miR-222 and miR-143, the relatively most abundant miRs in ischaemic exosomes, partially recapitulate the angiogenic effect of exosomes. Additionally, we show that ischaemic exosomes stimulate the formation of new functional vessels in vivo using in ovo and Matrigel plug assays. Finally, we demonstrate that intramyocardial delivery of ischaemic exosomes improves neovascularization following MI. Conclusions This study establishes that exosomes secreted by cardiomyocytes under ischaemic conditions promote heart angiogenesis, which may pave the way towards the development of add-on therapies to enhance myocardial blood supply.
npj Regenerative Medicine | 2017
Luís Miguel Monteiro; Francisco Vasques-Nóvoa; Lino Ferreira; Perpétua Pinto-do-Ó; Diana S. Nascimento
Cardiovascular diseases are the main cause of death in the world and are often associated with the occurrence of arrhythmias due to disruption of myocardial electrical integrity. Pathologies involving dysfunction of the specialized cardiac excitatory/conductive tissue are also common and constitute an added source of morbidity and mortality since current standard therapies withstand a great number of limitations. As electrical integrity is essential for a well-functioning heart, innovative strategies have been bioengineered to improve heart conduction and/or promote myocardial repair, based on: (1) gene and/or cell delivery; or (2) conductive biomaterials as tools for cardiac tissue engineering. Herein we aim to review the state-of-art in the area, while briefly describing the biological principles underlying the heart electrical/conduction system and how this system can be disrupted in heart disease. Suggestions regarding targets for future studies are also presented.
Medical Engineering & Physics | 2016
Marco Ferroni; Serena Giusti; Diana S. Nascimento; Ana Rosa Silva; Federica Boschetti; Arti Ahluwalia
The architecture and dynamic physical environment of tissues can be recreated in-vitro by combining 3D porous scaffolds and bioreactors able to apply controlled mechanical stimuli on cells. In such systems, the entity of the stimuli and the distribution of nutrients within the engineered construct depend on the micro-structure of the scaffolds. In this work, we present a new approach for optimizing computational fluid-dynamics (CFD) models for the investigation of fluid-induced forces generated by cyclic squeeze pressure within a porous construct, coupled with oxygen consumption of cardiomyocytes. A 2D axial symmetric macro-scaled model of a squeeze pressure bioreactor chamber was used as starting point for generating time dependent pressure profiles. Subsequently the fluid movement generated by the pressure fields was coupled with a complete 3D micro-scaled model of a porous protein cryogel. Oxygen transport and consumption inside the scaffold was evaluated considering a homogeneous distribution of cardiomyocytes throughout the structure, as confirmed by preliminary cell culture experiments. The results show that a 3D description of the system, coupling a porous geometry and time dependent pressure driven flow with fluid-structure-interaction provides an accurate and meaningful description of the microenvironment in terms of shear stress and oxygen distribution than simple stationary 2D models.
iberian conference on pattern recognition and image analysis | 2011
Tiago Esteves; Mariana Valente; Diana S. Nascimento; Perpétua Pinto-do-Ó; Pedro Quelhas
Rodent models of myocardial infarction (MI) have been extensively used in biomedical research towards the implementation of novel regenerative therapies. Permanent ligation of the left anterior descending (LAD) coronary artery is a commonly used method for inducing MI both in rat and mouse. Post-mortem evaluation of the heart, particularly the MI extension assessment performed on histological sections, is a critical parameter for this experimental setting. MI extension, which is defined as the percentage of the left ventricle affected by the coronary occlusion, has to be estimated by identifying the infarcted- and the normal-tissue in each section. However, because it is a manual procedure it is time-consuming, arduous and prone to bias. Herein, we introduce semi-automatic and automatic approaches to perform segmentation which is then used to obtain the infarct extension measurement. Experimental validation is performed comparing the proposed approaches with manual annotation and a total error not exceeding 8% is reported in all cases.
international symposium on biomedical imaging | 2012
Tiago Esteves; Mariana Valente; Diana S. Nascimento; Perpétua Pinto-do-Ó; Pedro Quelhas
Experimental rodent models of induced ischemic injury have been extensively used in biomedical research to study molecular, cellular and histological alterations following myocar-dial infarction. These models are increasingly employed to assess the potential of newly developed therapies for functional restoration of the damaged heart. Such studies are based on myocardial infarction induction followed by different therapeutic interventions and subsequent analysis of the infarct size. This analysis is used to evaluate the extent to which such interventions meet recovery of the lost myocardial tissue. Infarct size is defined as the percentage of the left ventricle affected by coronary artery occlusion. The infarct size is traditionally estimated manually delineating the infarcted and normal tissue areas in the left ventricle of the excised heart. However, this is a time-consuming, arduous and prone to bias process. Herein, we developed an anatomic model, adapted through expectation maximization, which allows for fully automatic analysis of the data. Experimental validation is performed comparing the proposed approach with manual annotation. The results obtained through anatomical model adaptation were coherent with those manually obtained and the differences where never higher than 10%.