Diana Vilela
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Diana Vilela.
Analytica Chimica Acta | 2012
Diana Vilela; María Cristina González; Alberto Escarpa
Localized surface plasmon resonance (LSPR) is one of the most remarkable features of gold nanoparticles (Au NPs) and silver nanoparticles (Ag NPs). Due to these inherent optical properties, colloidal solutions of Au and Ag NPs have high extinction coefficients and different colour in the visible region of the spectrum when they are well-spaced in comparison with when they are aggregated. Therefore, a well-designed chemical interaction between the analyte and NPs surroundings leads to a change of colour (red to blue for Au NPs and yellow to brown for Ag NPs from well-spaced to aggregated ones, respectively) allowing the visual detection of the target analyte. These approaches have exhibited an excellent analytical performance with high sensitivities due to the strong LSPR and excellent selectivity strategically driven by the interaction analyte-NPs surroundings involving mainly electrostatic and hydrogen bond interactions as well as donor-acceptor chemical reactions, among others. In addition, this kind of colorimetric assays has received considerable attention in the analytical field because of their simplicity and low cost since they do not require any expensive or complex instrumentation. As a consequence of this, detection of molecules with a high significance in the bio-medical, clinical, food safety and environmental fields including DNA, proteins and a wide spectrum of organic molecules as well as inorganic ions have been impressively reported in the most relevant literature using these assays. This timely review offers a rational vision of the main achievements yielded in the relevant literature according to this exciting and creative analytical field.
Nano Letters | 2016
Diana Vilela; Jemish Parmar; Yongfei Zeng; Yanli Zhao; Samuel Sanchez
Heavy metal contamination in water is a serious risk to the public health and other life forms on earth. Current research in nanotechnology is developing new nanosystems and nanomaterials for the fast and efficient removal of pollutants and heavy metals from water. Here, we report graphene oxide-based microbots (GOx-microbots) as active self-propelled systems for the capture, transfer, and removal of a heavy metal (i.e., lead) and its subsequent recovery for recycling purposes. Microbots’ structure consists of nanosized multilayers of graphene oxide, nickel, and platinum, providing different functionalities. The outer layer of graphene oxide captures lead on the surface, and the inner layer of platinum functions as the engine decomposing hydrogen peroxide fuel for self-propulsion, while the middle layer of nickel enables external magnetic control of the microbots. Mobile GOx-microbots remove lead 10 times more efficiently than nonmotile GOx-microbots, cleaning water from 1000 ppb down to below 50 ppb in 60 min. Furthermore, after chemical detachment of lead from the surface of GOx-microbots, the microbots can be reused. Finally, we demonstrate the magnetic control of the GOx-microbots inside a microfluidic system as a proof-of-concept for automatic microbots-based system to remove and recover heavy metals.
Angewandte Chemie | 2013
Jahir Orozco; Guanzhi Cheng; Diana Vilela; Sirilak Sattayasamitsathit; Rafael Vazquez-Duhalt; Gabriela Valdés-Ramírez; Alberto Escarpa; Chengyou Kan; Joseph Wang
Rapid field conversion of chemical weapons into non-toxic products is one of the most challenging tasks in weapons of mass destruction (WMD) science. This is particularly the case for eliminating stockpiles of chemical warfare agents (CWAs) in remote storage field locations, where the use of large quantities of decontaminating reagents, long reaction times, and controlled mechanical agitation is impossible or undesired. New efficient “clean” technologies and (bio)chemical processes are thus sought for detoxifying stored agents, counteracting nerve-agent attacks, and decommissioning chemical weapons. Environmentally friendly solutions of hydrogen peroxide, combined with suitable activators (e.g., bicarbonate), have been shown to be extremely useful for decontaminating a broad spectrum of CWAs to yield nontoxic products. These peroxide-based systems, which rely on the in situ generation of OOH nucleophiles, have recently replaced chlorine-based bleaching processes, which produce undesirable products, and have thus led to effective decontamination of the chemical agents GB (Sarin, isopropyl methylphosphonofluoridate), VX ((S)-[2-(diisopropylamino)ethyl] O-ethyl methylphosphonothioate), GD (Soman, pinacolyl methylphosphonofluoridate), and HD (sulfur mustard). Yet, such an oxidative treatment commonly requires high peroxide concentrations (20–30%; approaching a stoichiometry of 1:50), along with prolonged operation and/or mechanical agitation. Such reaction conditions are not suitable or not desired for eliminating stockpiles of CWAs in remote field settings or hostile storage locations, as large quantities of the reagents may not be transportable on military aircrafts and require special packaging and handling. The efficient elimination of chemical-weapon stockpiles in field locations thus remains a major challenge to the chemistry and defense communities. Herein, we describe a powerful strategy that is based on self-propelled micromotors, for a high-yielding accelerated oxidative decontamination of chemical threats using low peroxide levels and no external agitation. Functionalized synthetic micromotors have recently demonstrated remarkable capabilities in terms of isolation and transport for diverse biomedical and environmental applications, but not in connection to increasing the yield and speed of chemical reactions. The new motor-based method relies on the use of peroxide-driven microtubular engines for the efficient selfmixing of a remediation solution, which dramatically accelerates the decontamination process. Fluid mixing is extremely important for enhancing the yield and speed of a wide range of chemical processes, including decontamination reactions, where quiescent conditions lead to low reaction efficiency and long operations. The observed mixing, which is induced by the peroxide-driven micromotor, is analogous to that reported for the motility of E. coli bacteria, where a large-scale collective motion has been shown to enhance diffusion processes. Enhanced diffusion of passive tracers has also been observed in the presence of catalytic nanowire motors. Although the new micromotor strategy presented herein was applied to the accelerated, high-yielding, and simplified decontamination of organophosphate (OP) nerve agents, the concept could have broad implications for enhancing the efficiency and speed of a wide range of chemical processes in the absence of external agitation. The concept of the micromotor/peroxide-based decontamination of chemical threats is illustrated in Figure 1. This new strategy relies on micromotors without mechanical stirring (Figure 1A). A known number of micromotors were placed in a nerve-agent-contaminated solution, along with hydrogen peroxide (used as the oxidizing agent as well as the micromotor fuel), the peroxide activator (NaHCO3 or NaOH), and the surfactant sodium cholate (NaCh), which was essential for bubble generation. The oxidative conversion of the OP nerve agent into para-nitrophenol (p-NP) was achieved under mild quiescent conditions that involve the in situ generation of OOH nucleophiles with no external stirring (Figure 1B). The decrease in concentration of the OP [*] Dr. J. Orozco, G. Cheng, D. Vilela, Dr. S. Sattayasamitsathit, Prof. R. Vazquez-Duhalt, Dr. G. Vald s-Ram rez, Dr. O. S. Pak, Prof. J. Wang Departments of Nanoengineering and Mechanical Engineering University of California San Diego La Jolla, CA 92093 (USA) E-mail: [email protected] G. Cheng, Prof. C. Kan Tsinghua University, Beijing, 100084 (China) D. Vilela, Prof. A. Escarpa University of Alcal 28871 Alcal de Henares (Spain)
Electrophoresis | 2012
Aída Martín; Diana Vilela; Alberto Escarpa
From 2008 to date, basically, single‐cross microchip electrophoresis (ME) design has been used for food analysis with electrochemicaland laser‐induced fluorescencedetection being the most commonprinciples coupled. In the last 4 years, the main outlines were: (i) the exploration of new analytes such as heavy metals, nitrite, micotoxins, microorganisms, and allergens; (ii) the development of electrokinetic microfluidic (bio‐) sensors into microchip format for the detection of toxins; and interestingly (iii) although sample preparation is still performed off‐chip, an important increase in works dealing with complicated food samples has been clearly noticed. Although microchip technology based on electrokinetics is emerging from important fields such as authentication of foods, detection of frauds, toxics, and allergens; the marriage between micro‐ and nanotechnologies and total integration approaches has not reached the expected impact in the field but it is still a great promise for the development of ME of new generations for food analysis.
Analytical Chemistry | 2012
Diana Vilela; Jesús Garoz; Alvaro Colina; María Cristina González; Alberto Escarpa
Novel single-walled carbon nanotube press-transfer electrodes (SW-PTEs) for microfluidic sensing are proposed. In this approach, carbon nanotubes are press-transferred on poly(methyl methacrylate) (PMMA) substrates and are easily coupled to microfluidic chips and act as the exclusive transducer in electrochemical sensing. The detector design consisted of a press-transferred SW film (7 mm × 1 mm) positioned and centered on the PMMA substrate (33 mm × 9 mm). The analytical performance of the SW-PTEs was deeply evaluated using two commercial SWs sources and employing a mixture of dopamine and catechol as model analytes. Analyte detection was influenced by the volume of commercial SW dispersion used in the fabrication of SW-PTEs, with 5 mL taken from a dispersion of 0.5 mg/100 mL being the most favorable volume. In addition, excellent repeatability (relative standard deviation (RSD) of ≤7%, n = 5), interelectrodes reproducibility (RSD ≤ 9%, n = 5), and an extreme resistance to fouling were obtained even after 1 h of microchip analysis with RSD values of ≤4% and ≤9% (n = 15) for migration times and peak heights, respectively. Good sensitivity, remarkable signal-to-noise characteristics, and a well-defined linear concentration dependence (r ≥ 0.990) was also obtained, which allowed these novel detectors to be considered as valuable tools for quantitative analysis. Analytical characterization of the SW-PTEs by field-emission scanning electron microscopy (FESEM) revealed individual bundles of SWs that were highly ordered over the PMMA at the background where the SW bundles were embedded on the PMMA substrate, giving the electrode a high stability. Furthermore, the laboratory-fabricated SW-PTEs can be afforded in any laboratory since they do not require clean-room facilities and are highly compatible with microfluidic scale, mass production, and disposability. In addition, the proposed approach draws new and exciting horizons for electrochemical microfluidic sensing, such as the use of other pure or hybrid nanomaterials and also the possibilities to incorporate biomolecules for highly selective sensing.
Chemistry: A European Journal | 2014
Jahir Orozco; Diana Vilela; Gabriela Valdés-Ramírez; Yuri Fedorak; Alberto Escarpa; Rafael Vazquez-Duhalt; Joseph Wang
The first example of a self-propelled tubular motor that releases an enzyme for the efficient biocatalytic degradation of chemical pollutants is demonstrated. How the motors are self-propelled by the Marangoni effect, involving simultaneous release of SDS surfactant and the enzyme remediation agent (laccase) in the polluted sample, is illustrated. The movement induces fluid convection and leads to the rapid dispersion of laccase into the contaminated solution and to a dramatically accelerated biocatalytic decontamination process. The greatly improved degradation efficiency, compared to quiescent solutions containing excess levels of the free enzyme, is illustrated for the efficient biocatalytic degradation of phenolic and azo-type pollutants. The high efficiency of the motor-based decontamination approach makes it extremely attractive for a wide-range of remediation processes in the environmental, defense and public health fields.
Food Chemistry | 2015
Flavio Della Pelle; Diana Vilela; María Cristina González; Claudio Lo Sterzo; Dario Compagnone; Michele Del Carlo; Alberto Escarpa
A simple gold nanoparticles (AuNPs) based colorimetric assay for the antioxidant activity determination has been developed. The AuNP formation is mediated by extra virgin olive oil (EVOOs) endogenous polyphenols; the reaction is described by a sigmoidal curve. The ratio KAuNPs/Xc(50) (slope of the linear part of the sigmoid/concentration at half value of the absorbance) was found to be the optimal parameter to report the antioxidant capacity with respect to the single KAuNPs or Xc(50) values. The obtained data demonstrated that the compounds with ortho-diphenols functionality are most active in reducing gold (III) to gold (0). Thus, intermediate activity was found for gallic acid, while tyrosol (mono-phenols) had a significant lower activity than the others antioxidant compounds (at least one order of magnitude). In the analysis of olive oil samples, a significant correlation among classical methods used to determine antioxidant activity and the proposed parameter was found with R values in the 0.96-0.97 range.
Lab on a Chip | 2016
Diana Vilela; Agostino Romeo; Samuel Sánchez
Flexible sensing devices have gained a great deal of attention among the scientific community in recent years. The application of flexible sensors spans over several fields, including medicine, industrial automation, robotics, security, and human-machine interfacing. In particular, non-invasive health-monitoring devices are expected to play a key role in the improvement of patient life and in reducing costs associated with clinical and biomedical diagnostic procedures. Here, we focus on recent advances achieved in flexible devices applied on the human skin for biomedical and healthcare purposes.
ACS Nano | 2017
Morgan M. Stanton; Byung-Wook Park; Diana Vilela; Klaas Bente; Damien Faivre; Metin Sitti; Samuel Sánchez
Biofilm colonies are typically resistant to general antibiotic treatment and require targeted methods for their removal. One of these methods includes the use of nanoparticles as carriers for antibiotic delivery, where they randomly circulate in fluid until they make contact with the infected areas. However, the required proximity of the particles to the biofilm results in only moderate efficacy. We demonstrate here that the nonpathogenic magnetotactic bacteria Magnetosopirrillum gryphiswalense (MSR-1) can be integrated with drug-loaded mesoporous silica microtubes to build controllable microswimmers (biohybrids) capable of antibiotic delivery to target an infectious biofilm. Applying external magnetic guidance capability and swimming power of the MSR-1 cells, the biohybrids are directed to and forcefully pushed into matured Escherichia coli (E. coli) biofilms. Release of the antibiotic, ciprofloxacin, is triggered by the acidic microenvironment of the biofilm, ensuring an efficient drug delivery system. The results reveal the capabilities of a nonpathogenic bacteria species to target and dismantle harmful biofilms, indicating biohybrid systems have great potential for antibiofilm applications.
ACS Applied Materials & Interfaces | 2017
Diana Vilela; Morgan M. Stanton; Jemish Parmar; Samuel Sánchez
Water contamination is one of the most persistent problems of public health. Resistance of some pathogens to conventional disinfectants can require the combination of multiple disinfectants or increased disinfectant doses, which may produce harmful byproducts. Here, we describe an efficient method for disinfecting Escherichia coli and removing the bacteria from contaminated water using water self-propelled Janus microbots decorated with silver nanoparticles (AgNPs). The structure of a spherical Janus microbot consists of a magnesium (Mg) microparticle as a template that also functions as propulsion source by producing hydrogen bubbles when in contact with water, an inner iron (Fe) magnetic layer for their remote guidance and collection, and an outer AgNP-coated gold (Au) layer for bacterial adhesion and improving bactericidal properties. The active motion of microbots increases the chances of the contact of AgNPs on the microbot surface with bacteria, which provokes the selective Ag+ release in their cytoplasm, and the microbot self-propulsion increases the diffusion of the released Ag+ ions. In addition, the AgNP-coated Au cap of the microbots has a dual capability of capturing bacteria and then killing them. Thus, we have demonstrated that AgNP-coated Janus microbots are capable of efficiently killing more than 80% of E. coli compared with colloidal AgNPs that killed only less than 35% of E. coli in contaminated water solutions in 15 min. After capture and extermination of bacteria, magnetic properties of the cap allow collection of microbots from water along with the captured dead bacteria, leaving water with no biological contaminants. The presented biocompatible Janus microbots offer an encouraging method for rapid disinfection of water.