Diane G. Morton
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Diane G. Morton.
Development | 2010
Alexander Beatty; Diane G. Morton; Kenneth J. Kemphues
Polarity is essential for generating cell diversity. The one-cell C. elegans embryo serves as a model for studying the establishment and maintenance of polarity. In the early embryo, a myosin II-dependent contraction of the cortical meshwork asymmetrically distributes the highly conserved PDZ proteins PAR-3 and PAR-6, as well as an atypical protein kinase C (PKC-3), to the anterior. The RING-finger protein PAR-2 becomes enriched on the posterior cortex and prevents these three proteins from returning to the posterior. In addition to the PAR proteins, other proteins are required for polarity in many metazoans. One example is the conserved Drosophila tumor-suppressor protein Lethal giant larvae (Lgl). In Drosophila and mammals, Lgl contributes to the maintenance of cell polarity and plays a role in asymmetric cell division. We have found that the C. elegans homolog of Lgl, LGL-1, has a role in polarity but is not essential. It localizes asymmetrically to the posterior of the early embryo in a PKC-3-dependent manner, and functions redundantly with PAR-2 to maintain polarity. Furthermore, overexpression of LGL-1 is sufficient to rescue loss of PAR-2 function. LGL-1 negatively regulates the accumulation of myosin (NMY-2) on the posterior cortex, representing a possible mechanism by which LGL-1 might contribute to polarity maintenance.
Development | 2013
Alexander Beatty; Diane G. Morton; Kenneth J. Kemphues
In the one-cell C. elegans embryo, polarity is maintained by mutual antagonism between the anterior cortical proteins PAR-3, PKC-3, PAR-6 and CDC-42, and the posterior cortical proteins PAR-2 and LGL-1 on the posterior cortex. The mechanisms by which these proteins interact to maintain polarity are incompletely understood. In this study, we investigate the interplay among PAR-2, LGL-1, myosin, the anterior PAR proteins and CDC-42. We find that PAR-2 and LGL-1 affect cortical myosin accumulation by different mechanisms. LGL-1 does not directly antagonize the accumulation of cortical myosin and instead plays a role in regulating PAR-6 levels. By contrast, PAR-2 likely has separate roles in regulating cortical myosin accumulation and preventing the expansion of the anterior cortical domain. We also provide evidence that asymmetry of active CDC-42 can be maintained independently of LGL-1 and PAR-2 by a redundant pathway that includes the CDC-42 GAP CHIN-1. Finally, we show that, in addition to its primary role in regulating the size of the anterior cortical domain via its binding to PAR-6, CDC-42 has a secondary role in regulating cortical myosin that is not dependent on PAR-6.
Genetics | 2012
Min Young Kim; Elisabetta Bucciarelli; Diane G. Morton; Byron C. Williams; Kristina Blake-Hodek; Claudia Pellacani; Jessica R. Von Stetina; Xiaoqian Hu; Maria Patrizia Somma; Daniela Drummond-Barbosa; Michael L. Goldberg
In vertebrates, mitotic and meiotic M phase is facilitated by the kinase Greatwall (Gwl), which phosphorylates a conserved sequence in the effector Endosulfine (Endos). Phosphorylated Endos inactivates the phosphatase PP2A/B55 to stabilize M-phase-specific phosphorylations added to many proteins by cyclin-dependent kinases (CDKs). We show here that this module functions essentially identically in Drosophila melanogaster and is necessary for proper mitotic and meiotic cell division in a wide variety of tissues. Despite the importance and evolutionary conservation of this pathway between insects and vertebrates, it can be bypassed in at least two situations. First, heterozygosity for loss-of-function mutations of twins, which encodes the Drosophila B55 protein, suppresses the effects of endos or gwl mutations. Several types of cell division occur normally in twins heterozygotes in the complete absence of Endos or the near absence of Gwl. Second, this module is nonessential in the nematode Caenorhaditis elegans. The worm genome does not contain an obvious ortholog of gwl, although it encodes a single Endos protein with a surprisingly well-conserved Gwl target site. Deletion of this site from worm Endos has no obvious effects on cell divisions involved in viability or reproduction under normal laboratory conditions. In contrast to these situations, removal of one copy of twins does not completely bypass the requirement for endos or gwl for Drosophila female fertility, although reducing twins dosage reverses the meiotic maturation defects of hypomorphic gwl mutants. These results have interesting implications for the function and evolution of the mechanisms modulating removal of CDK-directed phosphorylations.
Genetics | 2012
Diane G. Morton; Wendy A. Hoose; Kenneth J. Kemphues
The par genes of Caenorhabditis elegans are essential for establishment and maintenance of early embryo polarity and their homologs in other organisms are crucial polarity regulators in diverse cell types. Forward genetic screens and simple RNAi depletion screens have identified additional conserved regulators of polarity in C. elegans; genes with redundant functions, however, will be missed by these approaches. To identify such genes, we have performed a genome-wide RNAi screen for enhancers of lethality in conditional par-1 and par-4 mutants. We have identified 18 genes for which depletion is synthetically lethal with par-1 or par-4, or both, but produces little embryo lethality in wild type. Fifteen of the 18 genes identified in our screen are not previously known to function in C. elegans embryo polarity and 11 of them also increase lethality in a par-2 mutant. Among the strongest synthetic lethal genes, polarity defects are more apparent in par-2 early embryos than in par-1 or par-4, except for strd-1(RNAi), which enhances early polarity phenotypes in all three mutants. One strong enhancer of par-1 and par-2 lethality, F25B5.2, corresponds to nop-1, a regulator of actomyosin contractility for which the molecular identity was previously unknown. Other putative polarity enhancers identified in our screen encode cytoskeletal and membrane proteins, kinases, chaperones, and sumoylation and deubiquitylation proteins. Further studies of these genes should give mechanistic insight into pathways regulating establishment and maintenance of cell polarity.
PLOS ONE | 2013
Lucy D. Brennan; Thibault Roland; Diane G. Morton; Shanna Moore Fellman; SueYeon Chung; Mohammad Soltani; Joshua W. Kevek; Paul M. McEuen; Kenneth J. Kemphues; Michelle D. Wang
The introduction of chemical inhibitors into living cells at specific times in development is a useful method for investigating the roles of specific proteins or cytoskeletal components in developmental processes. Some embryos, such as those of Caenorhabditis elegans, however, possess a tough eggshell that makes introducing drugs and other molecules into embryonic cells challenging. We have developed a procedure using carbon-reinforced nanopipettes (CRNPs) to deliver molecules into C. elegans embryos with high temporal control. The use of CRNPs allows for cellular manipulation to occur just subsequent to meiosis II with minimal damage to the embryo. We have used our technique to replicate classical experiments using latrunculin A to inhibit microfilaments and assess its effects on early polarity establishment. Our injections of latrunculin A confirm the necessity of microfilaments in establishing anterior-posterior polarity at this early stage, even when microtubules remain intact. Further, we find that latrunculin A treatment does not prevent association of PAR-2 or PAR-6 with the cell cortex. Our experiments demonstrate the application of carbon-reinforced nanopipettes to the study of one temporally-confined developmental event. The use of CRNPs to introduce molecules into the embryo should be applicable to investigations at later developmental stages as well as other cells with tough outer coverings.
Journal of Biological Chemistry | 2018
Jason S. Watts; Diane G. Morton; Kenneth J. Kemphues; Jennifer L. Watts
Biotin is an essential cofactor for multiple metabolic reactions catalyzed by carboxylases. Biotin is covalently linked to apoproteins by holocarboxylase synthetase (HCS). Accordingly, some mutations in HCS cause holocarboxylase deficiency, a rare metabolic disorder that can be life-threatening if left untreated. However, the long-term effects of HCS deficiency are poorly understood. Here, we report our investigations of bpl-1, which encodes the Caenorhabditis elegans ortholog of HCS. We found that mutations in the biotin-binding region of bpl-1 are maternal-effect lethal and cause defects in embryonic polarity establishment, meiosis, and the integrity of the eggshell permeability barrier. We confirmed that BPL-1 biotinylates four carboxylase enzymes, and we demonstrate that BPL-1 is required for efficient de novo fatty acid biosynthesis. We also show that the lack of larval growth defects as well as nearly normal fatty acid composition in young adult worms is due to sufficient fatty acid precursors provided by dietary bacteria. However, BPL-1 disruption strongly decreased levels of polyunsaturated fatty acids in embryos produced by bpl-1 mutant hermaphrodites, revealing a critical role for BPL-1 in lipid biosynthesis during embryogenesis and demonstrating that dietary fatty acids and lipid precursors are not adequate to support early embryogenesis in the absence of BPL-1. Our findings highlight that studying BPL-1 function in C. elegans could help dissect the roles of this important metabolic enzyme under different environmental and dietary conditions.
Developmental Biology | 2018
Małgorzata J. Liro; Diane G. Morton; Lesilee S. Rose
The PAR-1 kinase of C. elegans is localized to the posterior of the one-cell embryo and its mutations affect asymmetric spindle placement and partitioning of cytoplasmic components in the first cell cycle. However, par-1 mutations do not cause failure to restrict the anterior PAR polarity complex to the same extent as mutations in the posteriorly localized PAR-2 protein. Further, it has been difficult to examine the role of PAR-1 in subsequent divisions due to the early defects in par-1 mutant embryos. Here we show that the PIG-1 kinase acts redundantly with PAR-1 to restrict the anterior PAR-3 protein for normal polarity in the one-cell embryo. By using a temperature sensitive allele of par-1, which exhibits enhanced lethality when combined with a pig-1 mutation, we have further explored roles for these genes in subsequent divisions. We find that both PIG-1 and PAR-1 regulate spindle orientation in the EMS blastomere of the four-cell stage embryo to ensure that it undergoes an asymmetric division. In this cell, PIG-1 and PAR-1 act in parallel pathways for spindle positioning, PIG-1 in the MES-1/SRC-1 pathway and PAR-1 in the Wnt pathway.
Current Biology | 2002
Fabio Piano; Aaron J. Schetter; Diane G. Morton; Kristin C. Gunsalus; Valerie Reinke; Stuart K. Kim; Kenneth J. Kemphues
Development | 2000
J.L. Watts; Diane G. Morton; Jennifer E. Bestman; Kenneth J. Kemphues
Current Biology | 2002
Albertha J. M. Walhout; Jérôme Reboul; Olena Shtanko; Nicolas Bertin; Philippe Vaglio; Hui Ge; Hongmei Lee; Lynn Doucette-Stamm; Kristin C. Gunsalus; Aaron J. Schetter; Diane G. Morton; Kenneth J. Kemphues; Valerie Reinke; Stuart K. Kim; Fabio Piano; Marc Vidal