Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diane Gong is active.

Publication


Featured researches published by Diane Gong.


Anesthesiology | 1997

Recovery and kinetic characteristics of desflurane and sevoflurane in volunteers after 8-h exposure, including kinetics of degradation products.

Edmond I. Eger; Terri Bowland; Pompiliu Ionescu; Michael J. Laster; Zexu Fang; Diane Gong; James M. Sonner; Richard B. Weiskopf

Background Desflurane and sevoflurane permit speedier changes in anesthetic partial pressures than do older halogenated anesthetics. The authors determined the kinetic characteristics of desflurane and sevoflurane and those of compound A [CH2 F-O-C(= CF2)(CF3)], a nephrotoxic degradation product of sevoflurane. Methods Volunteers received 1.25 minimum alveolar concentration of desflurane or sevoflurane, each administered for 8 h in a fresh gas inflow of 2 l/min. Inspired (FI) and end-tidal (FA) concentrations of anesthetic and compound A were measured during administration, and FA relative to FAO (the last end-tidal concentration during administration) during elimination. The indices of recovery were also measured. Results The ratio FI /FA rapidly approached 1.0, with values greater for sevoflurane (desflurane 1.06 +/- 0.01 vs. sevoflurane 1.11 +/- 0.02, mean +/- SD). The ratio FA /FI for compound A was approximately 0.8. The FA /FAO ratio decreased slightly more rapidly with desflurane than with sevoflurane, and objective measures indicated faster recovery with desflurane: The initial response to command (14 +/- 4 min vs. 28 +/- 8 min [means +/- SD]) and orientation (19 +/- 4 vs. 33 +/- 9 min) was quicker, and recovery was faster as defined by results of the Digit Symbol Substitution, P-deletion, and Trieger tests. Desflurane produced less vomiting (1 [0.5, 3]; median [quartiles] episodes) than did sevoflurane (5 [2.5, 7.5] episodes). The FA /FAO ratio for compound A decreased within 5 min to a constant value of 0.1. Conclusions These anesthetics have kinetics consistent with their solubilities. Sevofluranes greater biodegradation probably increases F sub I /FA differences during anesthetic administration and decreases FA /FAO differences during elimination. The FA for compound A differs from FI by 20% (FA /FI = 0.8) because of substantial degradation. Recovery from anesthesia proceeds nearly twice as fast with desflurane than with sevoflurane. Differences in ventilation, or alveolar or tissue elimination, do not completely explain the slower recovery with sevoflurane.


Anesthesia & Analgesia | 2000

Naturally occurring variability in anesthetic potency among inbred mouse strains

James M. Sonner; Diane Gong; Edmond I. Eger

UNLABELLED We measured the naturally occurring variability in anesthetic potency, defined by the minimum alveolar anesthetic concentrations (MACs) of inhaled anesthetics required to produce immobility in response to noxious stimuli, in seven widely used laboratory mouse strains. To these data, we added similar data for eight other mouse strains. The average MAC values for each anesthetic for the 15 strains were normally distributed, with a coefficient of variation (ratio of SD to mean) of 0.1. The range of MAC values was 39% for desflurane, 44% for isoflurane, and 55% for halothane. MAC values were highly reliable, with approximately 1% of the variance in MAC measurements for the strains being explained by measurement error. One hundred forty-six statistically significant differences among the 15 strains were found for the three inhaled anesthetics (isoflurane, desflurane, and halothane). Our results suggest that multiple genes underlie the observed variability in anesthetic potency. IMPLICATIONS Laboratory mouse strains differ significantly in susceptibility to anesthetics. These phenotypic differences may be exploited to help determine the genetic basis of anesthetic-induced immobility.


Anesthesia & Analgesia | 1998

Minimum alveolar concentrations of noble gases, nitrogen, and sulfur hexafluoride in rats: helium and neon as nonimmobilizers (nonanesthetics)

Donald D. Koblin; Zexu Fang; Edmond I. Eger; Michael J. Laster; Diane Gong; Pompiliu Ionescu; Michael J. Halsey; James R. Trudell

We assessed the anesthetic properties of helium and neon at hyperbaric pressures by testing their capacity to decrease anesthetic requirement for desflurane using electrical stimulation of the tail as the anesthetic endpoint (i.e., the minimum alveolar anesthetic concentration [MAC]) in rats. Partial pressures of helium or neon near those predicted to produce anesthesia by the Meyer-Overton hypothesis (approximately 80-90 atm), tended to increase desflurane MAC, and these partial pressures of helium and neon produced convulsions when administered alone. In contrast, the noble gases argon, krypton, and xenon were anesthetic with mean MAC values of (+/- SD) of 27.0 +/- 2.6, 7.31 +/- 0.54, and 1.61 +/- 0.17 atm, respectively. Because the lethal partial pressures of nitrogen and sulfur hexafluoride overlapped their anesthetic partial pressures, MAC values were determined for these gases by additivity studies with desflurane. Nitrogen and sulfur hexafluoride MAC values were estimated to be 110 and 14.6 atm, respectively. Of the gases with anesthetic properties, nitrogen deviated the most from the Meyer-Overton hypothesis. Implications: It has been thought that the high pressures of helium and neon that might be needed to produce anesthesia antagonize their anesthetic properties (pressure reversal of anesthesia). We propose an alternative explanation: like other compounds with a low affinity to water, helium and neon are intrinsically without anesthetic effect. (Anesth Analg 1998;87:419-24)


Anesthesia & Analgesia | 1997

Dose-related biochemical markers of renal injury after sevoflurane versus desflurane anesthesia in volunteers.

Edmond I. Eger; Diane Gong; Donald D. Koblin; Terri Bowland; Pompiliu Ionescu; Michael J. Laster; Richard B. Weiskopf

Sevoflurane (CH2 F-O-CH[CF3]2) reacts with carbon dioxide absorbents to produce Compound A (CH2 F-O-C[=CF2][CF3]). Because of concern about the potential nephrotoxicity of Compound A, the United States package label (but not that of several other countries) for sevoflurane recommends the use of fresh gas flow rates of 2 L/min or more. We previously demonstrated in humans that a 2-L/min flow rate delivery of 1.25 minimum alveolar anesthetic concentration (MAC) sevoflurane for 8 h can injure glomeruli (i.e., produce albuminuria) and proximal tubules (i.e., produce glucosuria and urinary excretion of alpha-glutathione-S-transferase [alpha-GST]). The present report extends this investigation to fasting volunteers given 4 h (n = 9) or 2 h (n = 7) of 1.25 MAC sevoflurane versus desflurane at 2 L/min via a standard circle absorber anesthetic system (all subjects given both anesthetics). Markers of renal injury (urinary creatinine, albumin, glucose, alpha-GST, and blood urea nitrogen) did not reveal significant injury after anesthesia with desflurane. Sevoflurane degradation with a 2-L/min fresh gas inflow rate produced average inspired concentrations of Compound A of 40 +/- 4 ppm (mean +/- SD, 8-h exposure [data from previous study]), 42 +/- 2 ppm (4 h), and 40 +/- 5 ppm (2 h). Relative to desflurane, sevoflurane given for 4 h caused statistically significant transient injury to glomeruli (slightly increased urinary albumin and serum creatinine) and to proximal tubules (increased urinary alpha-GST). Other measures of injury did not differ significantly between anesthetics. Neither anesthetic given for 2 h at 1.25 MAC produced injury. We conclude that 1.25 MAC sevoflurane plus Compound A produces dose-related glomerular and tubular injury with a threshold between 80 and 168 ppm/h of exposure to Compound A. This threshold for renal injury in normal humans approximates that found previously in normal rats. Implications: Human (and rat) kidneys are injured by a reactive compound (Compound A) produced by degradation of the clinical inhaled anesthetic, sevoflurane. Injury increases with increasing duration of exposure to a given concentration of Compound A. The response to Compound A has several implications, as discussed in the article. (Anesth Analg 1997;85:1154-63)


Anesthesia & Analgesia | 1999

Mouse strain modestly influences minimum alveolar anesthetic concentration and convulsivity of inhaled compounds

James M. Sonner; Diane Gong; Joana Li; Edmond I. Eger; Michael J. Laster

UNLABELLED In this study, we measured the minimum alveolar anesthetic concentration (MAC) in several mouse strains, including strains used in the construction of genetically engineered mice. This is important because defined genetic modifications are used increasingly to test mechanisms of inhaled anesthetic action, and background variability in MAC can potentially influence the interpretation of these studies. We investigated the effect of strain on MAC for desflurane, isoflurane, halothane, ethanol, the experimental anesthetic 1-chloro-1,2,2-trifluorocyclobutane, and convulsive 50% effective dose (the dose required to produce convulsions in 50% of animals) of the nonimmobilizer 1,2-dichlorohexafluorocyclobutane. These drugs were studied in eight inbred strains, including both laboratory and wild mouse strains (129/J, 129/SvJ, 129/Ola Hsd, C57BL/6NHsd, C57BL/6J, DBA/2J, Spret/Ei, and Cast/Ei), one hybrid strain (B6129F2/J, derived from the C57BL/6J and 129/J strains), and one outbred strain (CD-1). To test our ability to detect effects in a genetically modified mouse, we compared these data with those for a mouse lacking the gamma (neuronal) isoform of the protein kinase C gene (PKCgamma). We also assessed whether amputating the tail tip of mice (a standard method of obtaining tissue for genetic analysis) increased MAC (e.g., by sensitization of the spinal cord). MAC and convulsant 50% effective dose values differed modestly among strains, with a range of 17% to 39% from the lowest to highest values for MAC using conventional anesthetics, and up to 48% using the experimental anesthetic 1-chloro-1,2,2-trifluorocyclobutane. Convulsivity to the nonimmobilizer varied by 47%. Amputating the tail tip did not affect MAC. PKCgamma knockout mice had significantly higher MAC values than control animals for isoflurane, but not for halothane or desflurane, which implies that protein phosphorylation by PKCgamma can alter sensitivity to isoflurane. IMPLICATIONS Anesthetic potency differs by modest amounts among inbred, outbred, wild, and laboratory mouse strains. Absence of the neural form of protein kinase C increases minimum alveolar anesthetic concentration for isoflurane, indicating that protein phosphorylation by the gamma-isoform of protein kinase C (PKCgamma) can influence the potency of this anesthetic.


Anesthesia & Analgesia | 1998

The Effect of Anesthetic Duration on Kinetic and Recovery Characteristics of Desflurane Versus Sevoflurane, and on the Kinetic Characteristics of Compound A, in Volunteers

Edmond I. Eger; Diane Gong; Donald D. Koblin; Terri Bowland; Pompiliu Ionescu; Michael J. Laster; Richard B. Weiskopf

This study documents the differences in kinetics of 2 h (n = 7) and 4 h (n = 9) of 1.25 minimum alveolar anesthetic concentration (MAC) of desflurane (9.0%) versus (on a separate occasion) sevoflurane (3.0%), both administered in a fresh gas inflow of 2 L/min. These data are extensions of our previous 8-h (n = 7) studies of these anesthetics. By 10 min of anesthetic administration, average inspired (F (I)) and end-tidal concentration (FA) (FI/FA; the inverse of the more commonly used FA/FI) decreased to less than 1.15 for both anesthetics, with the difference from 1.0 nearly twice as great for sevoflurane as for desflurane. During all sevoflurane administrations, FA/FI for Compound A [CH2 F-O-C(=CF2) (CF3); a vinyl ether resulting from the degradation of sevoflurane by Baralyme[registered sign]] equaled approximately 0.8, and the average inspired concentration equaled approximately 40 ppm. Compound A is of interest because at approximately 150 ppm-h, it can induce biochemical and histological evidence of glomerular and tubular injury in rats and humans. During elimination, FA/FA0 for Compound A (FA0 is the last end-tidal concentration during anesthetic administration) decreased abruptly to 0 after 2 h and 4 h of anesthesia and to approximately 0.1 (FA approximately 3 ppm) after 8 h of anesthesia. In contrast, FA/FA0 for desflurane and sevoflurane decreased in a conventional, multiexponential manner, the decrease being increasingly delayed with increasing duration of anesthetic administration. FA/FA0 for sevoflurane exceeded that for desflurane for any given duration of anesthesia, and objective and subjective measures indicated a faster recovery with desflurane. Times (mean +/- SD) to initial response to command (2 h 10.9 +/- 1.2 vs 17.8 +/- 5.1 min, 4 h 11.3 +/- 2.1 vs 20.8 +/- 4.8 min, 8 h 14 +/- 4 vs 28 +/- 8 min) and orientation (2 h 12.7 +/- 1.6 vs 21.2 +/- 4.6 min, 4 h 14.8 +/- 3.1 vs 25.3 +/- 6.5 min, 8 h 19 +/- 4 vs 33 +/- 9 min) were shorter with desflurane. Recovery as defined by the digit symbol substitution test, P-deletion test, and Trieger test results was more rapid with desflurane. The incidence of vomiting was greater with sevoflurane after 8 h of anesthesia but not after shorter durations. We conclude that for each anesthetic duration, FI more closely approximates FA with desflurane during anesthetic administration, FA/FA0 decreases more rapidly after anesthesia with desflurane, and objective measures indicate more rapid recovery with desflurane. Finally, it seems that after 2-h and 4-h administrations, all Compound A taken up is bound within the body. Implications: Regardless of the duration of anesthesia, elimination is faster and recovery is quicker for the inhaled anesthetic desflurane than for the inhaled anesthetic sevoflurane. The toxic degradation product of sevoflurane, Compound A, seems to bind irreversibly to proteins in the body. (Anesth Analg 1998;86:414-21)


Anesthesia & Analgesia | 1997

Minimum alveolar anesthetic concentration values for the enantiomers of isoflurane differ minimally

Edmond I. Eger; Donald D. Koblin; Michael J. Laster; Volker Schurig; Markus Juza; Pompiliu Ionescu; Diane Gong

Results of in vivo and in vitro studies of the anesthetic potencies of the enantiomers (optical isomers) of isoflurane provide various results ranging from no difference to differences of nearly two fold.A finding of a difference in anesthetic requirement in the whole animal has particular relevance to theories of anesthetic mechanisms of action because it suggests that anesthesia may result from a specific anesthetic-receptor interaction. This led to our decision to redetermine the minimum alveolar anesthetic concentration (MAC) of (+)-S and (-)-R enantiomers of isoflurane in 12 Sprague-Dawley rats (six per group). The (+)-S enantiomer gave a MAC of 0.0144 +/- 0.0012 atm (i.e., 1.44% +/- 0.12% at 1 atm pressure; mean +/- SD) and the (-)-R enantiomer gave a MAC of 0.0169 +/- 0.0020 atm. Although the 17% greater value for the (-)-R enantiomer is qualitatively consistent with previous results the difference is not significant (P = 0.06), and the absolute difference is smaller than that found by a previous study. However, given the small sample size, our power to define a small significant difference is limited. Regardless of statistical significance, our results do not confirm the conclusion that interaction with a specific receptor is important to the mechanism of action of inhaled anesthetics. (Anesth Analg 1997;85:188-92)


Anesthesiology | 2002

Isoflurane Hyperalgesia Is Modulated by Nicotinic Inhibition

Pamela Flood; James M. Sonner; Diane Gong; Kristen Coates

Background The inhaled anesthetic isoflurane inhibits neuronal nicotinic acetylcholine receptors (nAChRs) at concentrations lower than those used for anesthesia. Isoflurane produces biphasic nociceptive responses, with both hyperalgesia and analgesia within this concentration range. Because nicotinic agonists act as analgesics, the authors hypothesized that inhibition of nicotinic transmission by isoflurane causes hyperalgesia. Methods The authors studied female mice at 6–8 weeks of age. They measured hind paw withdrawal latency at isoflurane concentrations from 0 to 0.98 vol% after the animals had received a nicotinic agonist (nicotine), a nicotinic antagonist (mecamylamine or chlorisondamine), or saline intraperitoneally. In addition, the authors tested the interactions between mecamylamine and isoflurane and nicotine and isoflurane in heterologously expressed &agr;4&bgr;2 nAChRs. Results Female mice had significant hyperalgesia from isoflurane. Nicotine administration prevented isoflurane-induced hyperalgesia without altering the antinociception produced by higher isoflurane concentrations. Mecamylamine treatment caused a biphasic nociceptive response similar to that caused by isoflurane. Mecamylamine and isoflurane had an additive effect, both at heterologously expressed &agr;4&bgr;2 nAChRs and on the production of hyperalgesia in vivo. Mecamylamine thus potentiated hyperalgesia but did not affect analgesia. Conclusions Since hyperalgesia occurs in vivo at isoflurane doses that antagonize nAChRs in vitro, is prevented by a nicotinic agonist, and is mimicked and potentiated by nicotinic antagonists, the authors conclude that isoflurane inhibition of nAChRs activation is involved in the pathway that causes hyperalgesia. At subanesthetic doses, isoflurane can either enhance pain responses (produce hyperalgesia) or be analgesic (antinociceptive). In rats, low volatile anesthetic concentrations (0.1–0.2 minimum alveolar concentration [MAC]) elicit hyperalgesia, while 0.4–0.6 MAC elicits antinociception.


Anesthesia & Analgesia | 1999

Minimum alveolar anesthetic concentration of fluorinated alkanols in rats: relevance to theories of narcosis.

Edmond I. Eger; Pompiliu Ionescu; Michael J. Laster; Diane Gong; Tomas Hudlicky; Joan J. Kendig; R. Adron Harris; James R. Trudell; Andrew Pohorille

UNLABELLED The Meyer-Overton hypothesis predicts that the potency of conventional inhaled anesthetics correlates inversely with lipophilicity: minimum alveolar anesthetic concentration (MAC) x the olive oil/gas partition coefficient equals a constant of approximately 1.82 +/- 0.56 atm (mean +/- SD), whereas MAC x the octanol/gas partition coefficient equals a constant of approximately 2.55 +/- 0.65 atm. MAC is the minimum alveolar concentration of anesthetic required to eliminate movement in response to a noxious stimulus in 50% of subjects. Although MAC x the olive oil/gas partition coefficient also equals a constant for normal alkanols from methanol through octanol, the constant (0.156 +/- 0.072 atm) is one-tenth that found for conventional anesthetics, whereas the product for MAC x the octanol/gas partition coefficient (1.72 +/- 1.19) is similar to that for conventional anesthetics. These normal alkanols also have much greater affinities for water (saline/gas partition coefficients equaling 708 [octanol] to 3780 [methanol]) than do conventional anesthetics. In the present study, we examined whether fluorination lowers alkanol saline/gas partition coefficients (i.e., decreases polarity) while sustaining or increasing lipid/gas partition coefficients, and whether alkanols with lower saline/gas partition coefficients had products of MAC x olive oil or octanol/gas partition coefficients that approached or exceeded those of conventional anesthetics. Fluorination decreased saline/gas partition coefficients to as low as 0.60 +/- 0.08 (CF3[CF2]6CH2OH) and, as hypothesized, increased the product of MAC x the olive oil or octanol/gas partition coefficients to values equaling or exceeding those found for conventional anesthetics. We conclude that the greater potency of many alkanols (greater than would be predicted from conventional inhaled anesthetics and the Meyer-Overton hypothesis) is associated with their greater polarity. IMPLICATIONS Inhaled anesthetic potency correlates with lipophilicity, but potency of common alkanols is greater than their lipophilicity indicates, in part because alkanols have a greater hydrophilicity--i.e., a greater polarity.


Anesthesiology | 2002

Heteromeric nicotinic inhibition by isoflurane does not mediate MAC or loss of righting reflex.

Pamela Flood; James M. Sonner; Diane Gong; Kristen Coates

Background Neuronal nicotinic acetylcholine receptors (nAChRs) have been implicated in the mechanism of action of isoflurane as they are inhibited at subanesthetic concentrations. Despite clear evidence for nicotinic inhibition at relevant isoflurane concentrations, it is unclear what behavioral result ensues, if any. Methods The authors have modeled two behaviors common to all general anesthetics, immobility and hypnosis, as minimum alveolar concentration that prevents movement in response to a supramaximal stimulus (MAC) and loss of righting reflex (LORR). They have tested the ability of nicotinic pharmacologic modulators and congenital absence of most heteromeric nAChRs to affect concentration of isoflurane required for these behaviors. Results Neither mecamylamine, 5 mg/kg, nor chlorisondamine, 10 mg/kg, affected isoflurane MAC. Nicotine caused a small decrease in MAC. None of the above agents had any effect on the concentration of isoflurane required for LORR. Mice genetically engineered to lack the &bgr;2 nicotinic gene product were not different in MAC or LORR from controls. Conclusions Nicotinic antagonists do not cause MAC or LORR. Inhibition of nicotinic acetylcholine receptors by isoflurane is not likely related to its ability to provide immobility and hypnosis in a surgical setting. This is perhaps not surprising as the inhibition of nAChRs in vitro is complete at an isoflurane concentration equal to one half of MAC. Nicotinic inhibition may, however, be involved in anesthetic behaviors such as amnesia and analgesia, which occur at lower anesthetic concentrations.

Collaboration


Dive into the Diane Gong's collaboration.

Top Co-Authors

Avatar

Edmond I. Eger

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zexu Fang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terri Bowland

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge