Diane J. Ivy
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Diane J. Ivy.
Science | 2016
Susan Solomon; Diane J. Ivy; Doug Kinnison; Michael J. Mills; Ryan R. Neely; Anja Schmidt
Turning the corner The Antarctic ozone hole is finally showing signs of disappearing, nearly 30 years after the Montreal Protocol came into effect. The Montreal Protocol, an international treaty that phased out the production of many of the human-made compounds responsible for stratospheric ozone destruction, is widely considered to be the most important and successful international environmental agreement. For years, it has slowed the rate of stratospheric ozone depletion, and now there are signs that the ozone abundance over Antarctica has begun to increase. Solomon et al. present observational data and model results to illustrate the trends and diagnose their causes. Science, this issue p. 269 Stratospheric ozone over the Antarctic has begun to increase after decades of losses. Industrial chlorofluorocarbons that cause ozone depletion have been phased out under the Montreal Protocol. A chemically driven increase in polar ozone (or “healing”) is expected in response to this historic agreement. Observations and model calculations together indicate that healing of the Antarctic ozone layer has now begun to occur during the month of September. Fingerprints of September healing since 2000 include (i) increases in ozone column amounts, (ii) changes in the vertical profile of ozone concentration, and (iii) decreases in the areal extent of the ozone hole. Along with chemistry, dynamical and temperature changes have contributed to the healing but could represent feedbacks to chemistry. Volcanic eruptions have episodically interfered with healing, particularly during 2015, when a record October ozone hole occurred after the Calbuco eruption.
Geophysical Research Letters | 2014
Matthew Rigby; Ronald G. Prinn; Simon O'Doherty; Benjamin R. Miller; Diane J. Ivy; Jens Mühle; Christina M. Harth; P. K. Salameh; Tim Arnold; Ray F. Weiss; P. B. Krummel; L. P. Steele; P. J. Fraser; Dickon Young; Peter G. Simmonds
Natural Environment Research Council (Great Britain) (Advanced Research Fellowship NE/I021365/1)
Proceedings of the National Academy of Sciences of the United States of America | 2013
Tim Arnold; Christina M. Harth; Jens Mühle; Alistair J. Manning; P. K. Salameh; Jooil Kim; Diane J. Ivy; L. P. Steele; Vasilii V. Petrenko; Jeffrey P. Severinghaus; Daniel Baggenstos; Ray F. Weiss
Nitrogen trifluoride (NF3) has potential to make a growing contribution to the Earth’s radiative budget; however, our understanding of its atmospheric burden and emission rates has been limited. Based on a revision of our previous calibration and using an expanded set of atmospheric measurements together with an atmospheric model and inverse method, we estimate that the global emissions of NF3 in 2011 were 1.18 ± 0.21 Gg⋅y−1, or ∼20 Tg CO2-eq⋅y−1 (carbon dioxide equivalent emissions based on a 100-y global warming potential of 16,600 for NF3). The 2011 global mean tropospheric dry air mole fraction was 0.86 ± 0.04 parts per trillion, resulting from an average emissions growth rate of 0.09 Gg⋅y−2 over the prior decade. In terms of CO2 equivalents, current NF3 emissions represent between 17% and 36% of the emissions of other long-lived fluorinated compounds from electronics manufacture. We also estimate that the emissions benefit of using NF3 over hexafluoroethane (C2F6) in electronics manufacture is significant—emissions of between 53 and 220 Tg CO2-eq⋅y−1 were avoided during 2011. Despite these savings, total NF3 emissions, currently ∼10% of production, are still significantly larger than expected assuming global implementation of ideal industrial practices. As such, there is a continuing need for improvements in NF3 emissions reduction strategies to keep pace with its increasing use and to slow its rising contribution to anthropogenic climate forcing.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Susan Solomon; Jessica Haskins; Diane J. Ivy; Flora Min
Significance Fundamental differences in observed ozone depletion between the Arctic and the Antarctic are shown, clarifying distinctions between both average and extreme ozone decreases in the two hemispheres. Balloon-borne and satellite measurements in the heart of the ozone layer near 18−24 km altitude show that extreme ozone decreases often observed in the Antarctic ozone hole region have not yet been measured in the Arctic in any year, including the unusually cold Arctic spring of 2011. The data provide direct evidence that heavily depleted air contains reduced nitric acid abundances, and better quantify the roles of polar stratospheric cloud chemistry and temperatures below −80 °C to −85 °C in ozone destruction. Antarctic ozone depletion is associated with enhanced chlorine from anthropogenic chlorofluorocarbons and heterogeneous chemistry under cold conditions. The deep Antarctic “hole” contrasts with the generally weaker depletions observed in the warmer Arctic. An unusually cold Arctic stratospheric season occurred in 2011, raising the question of how the Arctic ozone chemistry in that year compares with others. We show that the averaged depletions near 20 km across the cold part of each pole are deeper in Antarctica than in the Arctic for all years, although 2011 Arctic values do rival those seen in less-depleted years in Antarctica. We focus not only on averages but also on extremes, to address whether or not Arctic ozone depletion can be as extreme as that observed in the Antarctic. This information provides unique insights into the contrasts between Arctic and Antarctic ozone chemistry. We show that extreme Antarctic ozone minima fall to or below 0.1 parts per million by volume (ppmv) at 18 and 20 km (about 70 and 50 mbar) whereas the lowest Arctic ozone values are about 0.5 ppmv at these altitudes. At a higher altitude of 24 km (30-mbar level), no Arctic data below about 2 ppmv have been observed, including in 2011, in contrast to values more than an order of magnitude lower in Antarctica. The data show that the lowest ozone values are associated with temperatures below −80 °C to −85 °C depending upon altitude, and are closely associated with reduced gaseous nitric acid concentrations due to uptake and/or sedimentation in polar stratospheric cloud particles.
Journal of Climate | 2016
Diane J. Ivy; Susan Solomon; Harald E. Rieder
AbstractRadiative and dynamical heating rates control stratospheric temperatures. In this study, radiative temperature trends due to ozone depletion and increasing well-mixed greenhouse gases from 1980 to 2000 in the polar stratosphere are directly evaluated, and the dynamical contributions to temperature trends are estimated as the residual between the observed and radiative trends. The radiative trends are obtained from a seasonally evolving fixed dynamical heating calculation with the Parallel Offline Radiative Transfer model using four different ozone datasets, which provide estimates of observed ozone changes. In the spring and summer seasons, ozone depletion leads to radiative cooling in the lower stratosphere in the Arctic and Antarctic. In Arctic summer there is weak wave driving, and the radiative cooling due to ozone depletion is the dominant driver of observed trends. In late winter and early spring, dynamics dominate the changes in Arctic temperatures. In austral spring and summer in the Antar...
Journal of Climate | 2014
Diane J. Ivy; Susan Solomon; David W. J. Thompson
AbstractDynamical coupling between the stratospheric and tropospheric circumpolar circulations in the Arctic has been widely documented on month-to-month and interannual time scales, but not on longer time scales. In the Antarctic, both short- and long-term coupling extending from the stratosphere to the surface has been identified. In this study, changes in Arctic temperature, geopotential height, and ozone observed since the satellite era began in 1979 are examined, comparing dynamically quiescent years in which major sudden stratospheric warmings did not occur to all years. It is shown that this approach clarifies the behavior for years without major warmings and that dynamically quiescent years are marked by a strengthening of the Arctic polar vortex over the past 30 years. The associated declines in stratospheric temperatures, geopotential height, and ozone are qualitatively similar to those obtained in the Antarctic (albeit weaker), and propagate downward into the Arctic lowermost stratosphere durin...
Geophysical Research Letters | 2017
Diane J. Ivy; Susan Solomon; Doug Kinnison; Michael J. Mills; Anja Schmidt; Ryan R. Neely
Recent research has demonstrated that the concentrations of anthropogenic halocarbons have decreased in response to the worldwide phaseout of ozone depleting substances. Yet in 2015 the Antarctic ozone hole reached a historical record daily average size in October. Model simulations with specified dynamics and temperatures based on a reanalysis suggested that the record size was likely due to the eruption of Calbuco but did not allow for fully coupled dynamical or thermal feedbacks. We present simulations of the impact of the 2015 Calbuco eruption on the stratosphere using the Whole Atmosphere Community Climate Model with interactive dynamics and temperatures. Comparisons of the interactive and specified dynamics simulations indicate that chemical ozone depletion due to volcanic aerosols played a key role in establishing the record-sized ozone hole of October 2015. The analysis of an ensemble of interactive simulations with and without volcanic aerosols suggests that the forced response to the eruption of Calbuco was an increase in the size of the ozone hole by 4.5 × 10⁶ km².
Journal of Climate | 2017
Diane J. Ivy; Casey Hilgenbrink; Doug Kinnison; R. Alan Plumb; Aditi Sheshadri; Susan Solomon; David W. J. Thompson
AbstractMuch research has focused on trends in the Southern Hemispheric circulation in austral summer (December–February) in the troposphere and stratosphere, whereas changes in other seasons have received less attention. Here the seasonality and structure of observed changes in tropospheric and stratospheric winds, temperature, and ozone over the Southern Hemisphere are examined. It is found that statistically significant trends similar to those of the Antarctic summer season are also observed since 1979 in austral fall, particularly May, and are strongest over the Pacific sector of the hemisphere. Evidence is provided for a significant shift in the position of the jet in May over the Pacific, and it is shown that the strengthening and shifting of the jet has rendered the latitudinal distribution of upper-tropospheric zonal wind more bimodal. The Antarctic ozone hole has cooled the lower stratosphere and strengthened the polar vortex. While the mechanism and timing are not fully understood, the ozone hol...
Geophysical Research Letters | 2014
Tim Arnold; Diane J. Ivy; Christina M. Harth; Martin K. Vollmer; Jens Mühle; P. K. Salameh; L. Paul Steele; P. B. Krummel; Ray Wang; Dickon Young; C. Lunder; Ove Hermansen; T. S. Rhee; Jooil Kim; Stefan Reimann; Simon O'Doherty; P. J. Fraser; Peter G. Simmonds; Ronald G. Prinn; Ray F. Weiss
We report in situ atmospheric measurements of hydrofluorocarbon HFC-43-10mee (C5H2F10; 1,1,1,2,2,3,4,5,5,5-decafluoropentane) from seven observatories at various latitudes, together with measurements of archived air samples and recent Antarctic flask air samples. The global mean tropospheric abundance was 0.21 ± 0.05 ppt (parts per trillion, dry air mole fraction) in 2012, rising from 0.04 ± 0.03 ppt in 2000. We combine the measurements with a model and an inverse method to estimate rising global emissions—from 0.43 ± 0.34 Gg yr−1 in 2000 to 1.13 ± 0.31 Gg yr−1 in 2012 (~1.9 Tg CO2-eq yr−1 based on a 100 year global warming potential of 1660). HFC-43-10mee—a cleaning solvent used in the electronics industry—is currently a minor contributor to global radiative forcing relative to total HFCs; however, our calculated emissions highlight a significant difference from the available reported figures and projected estimates.
Journal of Geophysical Research | 2017
Kane A. Stone; Susan Solomon; Doug Kinnison; Michael C. Pitts; Lamont R. Poole; Michael J. Mills; Anja Schmidt; Ryan R. Neely; Diane J. Ivy; Michael J. Schwartz; Jean-Paul Vernier; Bryan J. Johnson; Matthew B. Tully; Andrew Klekociuk; Gert König-Langlo; Satoshi Hagiya
The Southern Hemisphere Antarctic stratosphere experienced two noteworthy events in 2015: a significant injection of sulfur from the Calbuco volcanic eruption in Chile in April, and a record-large Antarctic ozone hole in October and November. Here, we quantify Calbucos influence on stratospheric ozone depletion in austral spring 2015 using observations and an earth system model. We analyze ozonesondes, as well as data from the Microwave Limb Sounder. We employ the Community Earth System Model, version 1, with the Whole Atmosphere Community Climate Model (CESM1(WACCM)) in a specified dynamics setup, which includes calculations of volcanic effects. The Cloud Aerosol Lidar with Orthogonal Polarization data indicate enhanced volcanic liquid sulfate 532 nm backscatter values as far poleward as 68°S during October and November (in broad agreement with WACCM). Comparison of the location of the enhanced aerosols to ozone data supports the view that aerosols played a major role in increasing the ozone hole size, especially at pressure levels between 150 and 100 hPa. Ozonesonde vertical ozone profiles from the sites of Syowa, South Pole, and Neumayer, display the lowest individual October or November measurements at 150 hPa since the 1991 Mt. Pinatubo eruption period, with Davis showing similarly low values, but no available 1990s data. The analysis suggests that under the cold conditions ideal for ozone depletion, stratospheric volcanic aerosol particles from the moderate-magnitude eruption of Calbuco in 2015 greatly enhanced austral ozone depletion, particularly at 55–68°S, where liquid binary sulfate aerosols have a large influence on ozone concentrations.
Collaboration
Dive into the Diane J. Ivy's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs