Diane L. Sherman
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Diane L. Sherman.
Nature Reviews Neuroscience | 2005
Diane L. Sherman; Peter J. Brophy
The evolution of complex nervous systems in vertebrates has been accompanied by, and probably dependent on, the acquisition of the myelin sheath. Although there has been substantial progress in our understanding of the factors that determine glial cell fate, much less is known about the cellular mechanisms that determine how the myelin sheath is extended and stabilized around axons. This review highlights four crucial stages of myelination, namely, the selection of axons and initiation of cell–cell interactions between them and glial cells, the establishment of stable intercellular contact and assembly of the nodes of Ranvier, regulation of myelin thickness and, finally, longitudinal extension of myelin segments in response to the lengthening of axons during postnatal growth.
Neuron | 2005
Diane L. Sherman; Steven Tait; Shona Melrose; Richard Johnson; Barbara Zonta; Felipe A. Court; Wendy B. Macklin; Stephen Meek; Andrew Smith; David F. Cottrell; Peter J. Brophy
Voltage-gated sodium channels are concentrated in myelinated nerves at the nodes of Ranvier flanked by paranodal axoglial junctions. Establishment of these essential nodal and paranodal domains is determined by myelin-forming glia, but the mechanisms are not clear. Here, we show that two isoforms of Neurofascin, Nfasc155 in glia and Nfasc186 in neurons, are required for the assembly of these specialized domains. In Neurofascin-null mice, neither paranodal adhesion junctions nor nodal complexes are formed. Transgenic expression of Nfasc155 in the myelinating glia of Nfasc-/- nerves rescues the axoglial adhesion complex by recruiting the axonal proteins Caspr and Contactin to the paranodes. However, in the absence of Nfasc186, sodium channels remain diffusely distributed along the axon. Our study shows that the two major Neurofascins play essential roles in assembling the nodal and paranodal domains of myelinated axons; therefore, they are essential for the transition to saltatory conduction in developing vertebrate nerves.
Neuron | 2003
Fumiaki Saito; Steven A. Moore; Rita Barresi; Michael D. Henry; Albee Messing; Susan E. Ross-Barta; Ronald D. Cohn; Roger A. Williamson; Kathleen A. Sluka; Diane L. Sherman; Peter J. Brophy; James D. Schmelzer; Phillip A. Low; Lawrence Wrabetz; M. Laura Feltri; Kevin P. Campbell
Dystroglycan is a central component of the dystrophin-glycoprotein complex implicated in the pathogenesis of several neuromuscular diseases. Although dystroglycan is expressed by Schwann cells, its normal peripheral nerve functions are unknown. Here we show that selective deletion of Schwann cell dystroglycan results in slowed nerve conduction and nodal changes including reduced sodium channel density and disorganized microvilli. Additional features of mutant mice include deficits in rotorod performance, aberrant pain responses, and abnormal myelin sheath folding. These data indicate that dystroglycan is crucial for both myelination and nodal architecture. Dystroglycan may be required for the normal maintenance of voltage-gated sodium channels at nodes of Ranvier, possibly by mediating trans interactions between Schwann cell microvilli and the nodal axolemma.
Nature | 2004
Felipe A. Court; Diane L. Sherman; Thomas Pratt; Emer M. Garry; Richard R. Ribchester; David F. Cottrell; Susan M. Fleetwood-Walker; Peter J. Brophy
Nerve impulses are propagated at nodes of Ranvier in the myelinated nerves of vertebrates. Internodal distances have been proposed to affect the velocity of nerve impulse conduction; however, direct evidence is lacking, and the cellular mechanisms that might regulate the length of the myelinated segments are unknown. Ramón y Cajal described longitudinal and transverse bands of cytoplasm or trabeculae in internodal Schwann cells and suggested that they had a nutritive function. Here we show that internodal growth in wild-type nerves is precisely matched to nerve extension, but disruption of the cytoplasmic bands in Periaxin-null mice impairs Schwann cell elongation during nerve growth. By contrast, myelination proceeds normally. The capacity of wild-type and mutant Schwann cells to elongate is cell-autonomous, indicating that passive stretching can account for the lengthening of the internode during limb growth. As predicted on theoretical grounds, decreased internodal distances strikingly decrease conduction velocities and so affect motor function. We propose that microtubule-based transport in the longitudinal bands of Cajal permits internodal Schwann cells to lengthen in response to axonal growth, thus ensuring rapid nerve impulse transmission.
Neuron | 2001
Diane L. Sherman; Cinzia Fabrizi; C. Stewart Gillespie; Peter J. Brophy
Dystroglycan-dystrophin complexes are believed to have structural and signaling functions by linking extracellular matrix proteins to the cytoskeleton and cortical signaling molecules. Here we characterize a dystroglycan-dystrophin-related protein 2 (DRP2) complex at the surface of myelin-forming Schwann cells. The complex is clustered by the interaction of DRP2 with L-periaxin, a homodimeric PDZ domain-containing protein. In the absence of L-periaxin, DRP2 is mislocalized and depleted, although other dystrophin family proteins are unaffected. Disruption of the DRP2-dystroglycan complex is followed by hypermyelination and destabilization of the Schwann cell-axon unit in Prx(-/-) mice. Hence, the DRP2-dystroglycan complex likely has a distinct function in the terminal stages of PNS myelinogenesis, possibly in the regulation of myelin thickness.
Neuron | 2000
C. Stewart Gillespie; Diane L. Sherman; Susan M. Fleetwood-Walker; David F. Cottrell; Steven Tait; Emer M. Garry; Victoria C.J. Wallace; Jan Ure; I. R. Griffiths; Austin Smith; Peter J. Brophy
The Prx gene in Schwann cells encodes L- and S-periaxin, two abundant PDZ domain proteins thought to have a role in the stabilization of myelin in the peripheral nervous system (PNS). Mice lacking a functional Prx gene assemble compact PNS myelin. However, the sheath is unstable, leading to demyelination and reflex behaviors that are associated with the painful conditions caused by peripheral nerve damage. Older Prx-/- animals display extensive peripheral demyelination and a severe clinical phenotype with mechanical allodynia and thermal hyperalgesia, which can be reversed by intrathecal administration of a selective NMDA receptor antagonist We conclude that the periaxins play an essential role in stabilizing the Schwann cell-axon unit and that the periaxin-deficient mouse will be an important model for studying neuropathic pain in late onset demyelinating disease.
Journal of Cell Biology | 2008
Barbara Zonta; Steven Tait; Shona Melrose; Heather Anderson; Sheila Harroch; Jennifer Higginson; Diane L. Sherman; Peter J. Brophy
Rapid nerve impulse conduction in myelinated axons requires the concentration of voltage-gated sodium channels at nodes of Ranvier. Myelin-forming oligodendrocytes in the central nervous system (CNS) induce the clustering of sodium channels into nodal complexes flanked by paranodal axoglial junctions. However, the molecular mechanisms for nodal complex assembly in the CNS are unknown. Two isoforms of Neurofascin, neuronal Nfasc186 and glial Nfasc155, are components of the nodal and paranodal complexes, respectively. Neurofascin-null mice have disrupted nodal and paranodal complexes. We show that transgenic Nfasc186 can rescue the nodal complex when expressed in Nfasc−/− mice in the absence of the Nfasc155–Caspr–Contactin adhesion complex. Reconstitution of the axoglial adhesion complex by expressing transgenic Nfasc155 in oligodendrocytes also rescues the nodal complex independently of Nfasc186. Furthermore, the Nfasc155 adhesion complex has an additional function in promoting the migration of myelinating processes along CNS axons. We propose that glial and neuronal Neurofascins have distinct functions in the assembly of the CNS node of Ranvier.
Journal of Cell Biology | 2004
Nicole Schaeren-Wiemers; Annick Bonnet; Michael Erb; Beat Erne; Udo Bartsch; Frances Kern; Ned Mantei; Diane L. Sherman; Ueli Suter
The myelin and lymphocyte protein (MAL) is a tetraspan raft-associated proteolipid predominantly expressed by oligodendrocytes and Schwann cells. We show that genetic ablation of mal resulted in cytoplasmic inclusions within compact myelin, paranodal loops that are everted away from the axon, and disorganized transverse bands at the paranode–axon interface in the adult central nervous system. These structural changes were accompanied by a marked reduction of contactin-associated protein/paranodin, neurofascin 155 (NF155), and the potassium channel Kv1.2, whereas nodal clusters of sodium channels were unaltered. Initial formation of paranodal regions appeared normal, but abnormalities became detectable when MAL started to be expressed. Biochemical analysis revealed reduced myelin-associated glycoprotein, myelin basic protein, and NF155 protein levels in myelin and myelin-derived rafts. Our results demonstrate a critical role for MAL in the maintenance of central nervous system paranodes, likely by controlling the trafficking and/or sorting of NF155 and other membrane components in oligodendrocytes.
The Journal of Neuroscience | 2012
Diane L. Sherman; Michiel Krols; Lai-Man N. Wu; Matthew Grove; Klaus-Armin Nave; Yann-Gaël Gangloff; Peter J. Brophy
In developing peripheral nerves, differentiating Schwann cells sort individual axons from bundles and ensheath them to generate multiple layers of myelin. In recent years, there has been an increased understanding of the extracellular and intracellular factors that initiate and stimulate Schwann cell myelination, together with a growing appreciation of some of the signaling pathways involved. However, our knowledge of how Schwann cell growth is regulated during myelination is still incomplete. The mammalian target of rapamycin (mTOR) is a core kinase in two major complexes, mTORC1 and mTORC2, that regulate cell growth and differentiation in a variety of mammalian cells. Here we show that elimination of mTOR from murine Schwann cells prevented neither radial sorting nor the initiation of myelination. However, normal postnatal growth of myelinating Schwann cells, both radially and longitudinally, was highly retarded. The myelin sheath in the mutant was much thinner than normal; nevertheless, sheath thickness relative to axon diameter (g-ratio) remained constant in both wild-type and mutant nerves from P14 to P90. Although axon diameters were normal in the mutant at the initiation of myelination, further growth as myelination proceeded was retarded, and this was associated with reduced phosphorylation of neurofilaments. Consistent with thinner axonal diameters and internodal lengths, conduction velocities in mutant quadriceps nerves were also reduced. These data establish a critical role for mTOR signaling in both the longitudinal and radial growth of the myelinating Schwann cell.
Neuron | 2011
Barbara Zonta; Anne Desmazieres; Arianna Rinaldi; Steven Tait; Diane L. Sherman; Matthew F. Nolan; Peter J. Brophy
Summary The axon initial segment (AIS) is critical for the initiation and propagation of action potentials. Assembly of the AIS requires interactions between scaffolding molecules and voltage-gated sodium channels, but the molecular mechanisms that stabilize the AIS are poorly understood. The neuronal isoform of Neurofascin, Nfasc186, clusters voltage-gated sodium channels at nodes of Ranvier in myelinated nerves: here, we investigate its role in AIS assembly and stabilization. Inactivation of the Nfasc gene in cerebellar Purkinje cells of adult mice causes rapid loss of Nfasc186 from the AIS but not from nodes of Ranvier. This causes AIS disintegration, impairment of motor learning and the abolition of the spontaneous tonic discharge typical of Purkinje cells. Nevertheless, action potentials with a modified waveform can still be evoked and basic motor abilities remain intact. We propose that Nfasc186 optimizes communication between mature neurons by anchoring the key elements of the adult AIS complex.