Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diane M. Ward is active.

Publication


Featured researches published by Diane M. Ward.


Cell | 2003

The Protein Network of HIV Budding

Uta K. von Schwedler; Melissa Stuchell; Barbara Müller; Diane M. Ward; Hyo Young Chung; Eiji Morita; Hubert E. Wang; Thaylon Davis; Gong Ping He; Daniel M. Cimbora; Anna Scott; Hans-Georg Kräusslich; Jerry Kaplan; Scott G. Morham; Wesley I. Sundquist

HIV release requires TSG101, a cellular factor that sorts proteins into vesicles that bud into multivesicular bodies (MVB). To test whether other proteins involved in MVB biogenesis (the class E proteins) also participate in HIV release, we identified 22 candidate human class E proteins. These proteins were connected into a coherent network by 43 different protein-protein interactions, with AIP1 playing a key role in linking complexes that act early (TSG101/ESCRT-I) and late (CHMP4/ESCRT-III) in the pathway. AIP1 also binds the HIV-1 p6(Gag) and EIAV p9(Gag) proteins, indicating that it can function directly in virus budding. Human class E proteins were found in HIV-1 particles, and dominant-negative mutants of late-acting human class E proteins arrested HIV-1 budding through plasmal and endosomal membranes. These studies define a protein network required for human MVB biogenesis and indicate that the entire network participates in the release of HIV and probably many other viruses.


Nature Reviews Molecular Cell Biology | 2008

Regulation of iron acquisition and storage: consequences for iron-linked disorders

Ivana De Domenico; Diane M. Ward; Jerry Kaplan

Mammalian iron homeostasis must be meticulously regulated so that this essential element is available for use, but at the same time prevented from promoting the formation of toxic radicals. Controlling the entry of iron into blood plasma is the main mechanism by which iron stores in the body are physiologically manipulated and regulated. Defects in iron acquisition at the cellular and systemic levels lead to human disorders, which involve either iron overload or iron deficiency. Discoveries of iron transporters and insights into their regulation have provided important information about iron metabolism and genetic iron disorders.


The EMBO Journal | 2007

Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin

Ivana De Domenico; Diane M. Ward; Maria Carmela Bonaccorsi di Patti; Suh Young Jeong; Samuel David; Giovanni Musci; Jerry Kaplan

Ferroportin (Fpn), a ferrous iron Fe(II) transporter responsible for the entry of iron into plasma, is regulated post‐translationally through internalization and degradation following binding of the hormone hepcidin. Cellular iron export is impaired in mice and humans with aceruloplasminemia, an iron overload disease due to mutations in the ferroxidase ceruloplasmin (Cp). In the absence of Cp Fpn is rapidly internalized and degraded. Depletion of extracellular Fe(II) by the yeast ferroxidase Fet3p or iron chelators can maintain cell surface Fpn in the absence of Cp. Iron remains bound to Fpn in the absence of multicopper oxidases. Fpn with bound iron is recognized by a ubiquitin ligase, which ubiquitinates Fpn on lysine 253. Mutation of lysine 253 to alanine prevents ubiquitination and maintains Fpn‐iron on cell surface in the absence of ferroxidase activity. The requirement for a ferroxidase to maintain iron transport activity represents a new mechanism of regulating cellular iron export, a new function for Cp and an explanation for brain iron overload in patients with aceruloplasminemia.


Current Opinion in Hematology | 2008

Chediak-Higashi syndrome

Jerry Kaplan; Ivana De Domenico; Diane M. Ward

Purpose of reviewChediak-Higashi syndrome, a rare autosomal recessive disorder, was described over 50 years ago. Patients show hypopigmentation, recurrent infections, mild coagulation defects and varying neurologic problems. Treatment is bone marrow transplant, which is effective in treating the hematologic and immune defects, however the neurologic problems persist. The CHS1/LYST gene was identified over 10 years ago and homologous CHS1/LYST genes are present in all eukaryotes. This review will discuss the advances made in understanding the clinical aspects of the syndrome and the function of CHS1/LYST/Beige. Recent findingsClinical reports of Chediak-Higashi syndrome have identified mutations throughout the CHS1/LYST gene. The nature of the mutation can be a predictor of the severity of the disease. Over the past decade the CHS1/LYST family of proteins has been analyzed using model organisms, two-hybrid analysis, overexpression phenotypes and dominant negatives. These studies suggest that the CHS1/LYST protein is involved in either vesicle fusion or fission. SummaryAlthough CHS is a rare disease, the Chediak-like family of proteins is providing insight into the regulation of vesicle trafficking. Understanding the basic mechanisms that govern vesicle trafficking will provide essential information regarding how loss of CHS1/LYST affects hematologic, immunologic and neurologic processes.


Nature Communications | 2015

Exosome-delivered microRNAs modulate the inflammatory response to endotoxin.

Margaret Alexander; Ruozhen Hu; Marah C. Runtsch; Dominique A. Kagele; Timothy L. Mosbruger; Tanya Tolmachova; Miguel C. Seabra; June L. Round; Diane M. Ward; Ryan M. O'Connell

MicroRNAs regulate gene expression posttranscriptionally and function within the cells in which they are transcribed. However, recent evidence suggests that microRNAs can be transferred between cells and mediate target gene repression. We find that endogenous miR-155 and miR-146a, two critical microRNAs that regulate inflammation, are released from dendritic cells within exosomes and are subsequently taken up by recipient dendritic cells. Following uptake, exogenous microRNAs mediate target gene repression and can reprogramme the cellular response to endotoxin, where exosome-delivered miR-155 enhances while miR-146a reduces inflammatory gene expression. We also find that miR-155 and miR-146a are present in exosomes and pass between immune cells in vivo, as well as demonstrate that exosomal miR-146a inhibits while miR-155 promotes endotoxin-induced inflammation in mice. Together, our findings provide strong evidence that endogenous microRNAs undergo a functional transfer between immune cells and constitute a mechanism of regulating the inflammatory response.


The EMBO Journal | 2006

Ferroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome

Ivana De Domenico; Michael B. Vaughn; Liangtao Li; Dustin Bagley; Giovanni Musci; Diane M. Ward; Jerry Kaplan

Ferritin is a cytosolic molecule comprised of subunits that self‐assemble into a nanocage capable of containing up to 4500 iron atoms. Iron stored within ferritin can be mobilized for use within cells or exported from cells. Expression of ferroportin (Fpn) results in export of cytosolic iron and ferritin degradation. Fpn‐mediated iron loss from ferritin occurs in the cytosol and precedes ferritin degradation by the proteasome. Depletion of ferritin iron induces the monoubiquitination of ferritin subunits. Ubiquitination is not required for iron release but is required for disassembly of ferritin nanocages, which is followed by degradation of ferritin by the proteasome. Specific mammalian machinery is not required to extract iron from ferritin. Iron can be removed from ferritin when ferritin is expressed in Saccharomyces cerevisiae, which does not have endogenous ferritin. Expressed ferritin is monoubiquitinated and degraded by the proteasome. Exposure of ubiquitination defective mammalian cells to the iron chelator desferrioxamine leads to degradation of ferritin in the lysosome, which can be prevented by inhibitors of autophagy. Thus, ferritin degradation can occur through two different mechanisms.


Journal of Biological Chemistry | 2008

Identification of FRA1 and FRA2 as Genes Involved in Regulating the Yeast Iron Regulon in Response to Decreased Mitochondrial Iron-Sulfur Cluster Synthesis

Attila Kumánovics; Opal S. Chen; Liangtao Li; Dustin Bagley; Erika M. Adkins; Huilan Lin; Nin N. Dingra; Caryn E. Outten; Greg Keller; Dennis R. Winge; Diane M. Ward; Jerry Kaplan

The nature of the connection between mitochondrial Fe-S cluster synthesis and the iron-sensitive transcription factor Aft1 in regulating the expression of the iron transport system in Saccharomyces cerevisiae is not known. Using a genetic screen, we identified two novel cytosolic proteins, Fra1 and Fra2, that are part of a complex that interprets the signal derived from mitochondrial Fe-S synthesis. We found that mutations in FRA1 (YLL029W) and FRA2 (YGL220W) led to an increase in transcription of the iron regulon. In cells incubated in high iron medium, deletion of either FRA gene results in the translocation of the low iron-sensing transcription factor Aft1 into the nucleus, where it occupies the FET3 promoter. Deletion of either FRA gene has the same effect on transcription as deletion of both genes and is not additive with activation of the iron regulon due to loss of mitochondrial Fe-S cluster synthesis. These observations suggest that the FRA proteins are in the same signal transduction pathway as Fe-S cluster synthesis. We show that Fra1 and Fra2 interact in the cytosol in an iron-independent fashion. The Fra1-Fra2 complex binds to Grx3 and Grx4, two cytosolic monothiol glutaredoxins, in an iron-independent fashion. These results show that the Fra-Grx complex is an intermediate between the production of mitochondrial Fe-S clusters and transcription of the iron regulon.


Molecular and Cellular Biology | 2009

Regulation of Mitochondrial Iron Import through Differential Turnover of Mitoferrin 1 and Mitoferrin 2

Prasad N. Paradkar; Kimberley B. Zumbrennen; Barry H. Paw; Diane M. Ward; Jerry Kaplan

ABSTRACT Mitoferrin 1 and mitoferrin 2 are homologous members of the mitochondrial solute carrier family. Mitoferrin 1 is required for mitochondrial iron delivery in developing erythrocytes. Here we show that mitoferrin 1 and mitoferrin 2 contribute to mitochondrial iron delivery in a variety of cells. Reductions in mitoferrin 1 and/or mitoferrin 2 levels by RNA interference result in decreased mitochondrial iron accumulation, heme synthesis, and iron-sulfur cluster synthesis. The ectopic expression of mitoferrin 1 in nonerythroid cells silenced for mitoferrin 2 or the expression of mitoferrin 2 in cells silenced for mitoferrin 1 restored heme synthesis to “baseline” levels. The ectopic expression of mitoferrin 2, however, did not support hemoglobinization in erythroid cells deficient in mitoferrin 1. Mitoferrin 2 could not restore heme synthesis in developing erythroid cells because of an inability of the protein to accumulate in mitochondria. The half-life of mitoferrin 1 was increased in developing erythroid cells, while the half-life of mitoferrin 2 did not change. These results suggest that mitochondrial iron accumulation is tightly regulated and that controlling mitoferrin levels within the mitochondrial membrane provides a mechanism to regulate mitochondrial iron levels.


Blood | 2008

Iron depletion limits intracellular bacterial growth in macrophages

Prasad N. Paradkar; Ivana De Domenico; Nina Durchfort; Irene E. Zohn; Jerry Kaplan; Diane M. Ward

Many intracellular pathogens infect macrophages and these pathogens require iron for growth. Here we demonstrate in vitro that the intracellular growth of Chlamydia psittaci, trachomatis, and Legionella pneumophila is regulated by the levels of intracellular iron. Macrophages that express cell surface ferroportin, the only known cellular iron exporter, limit the intracellular growth of these bacteria. Hepcidin is an antimicrobial peptide secreted by the liver in response to inflammation. Hepcidin binds to ferroportin mediating its internalization and degradation. Addition of hepcidin to infected macrophages enhanced the intracellular growth of these pathogens. Macrophages from flatiron mice, a strain heterozygous for a loss-of-function ferroportin mutation, showed enhanced intracellular bacterial growth independent of the presence of exogenous hepcidin. Macrophages, from wild-type or flatiron mice, incubated with the oral iron chelator deferriprone or desferasirox showed reduced intracellular bacterial growth suggesting that these chelators might be therapeutic in chronic intracellular bacterial infections.


Journal of Virology | 2006

Human ESCRT-II Complex and Its Role in Human Immunodeficiency Virus Type 1 Release

Charles Langelier; Uta K. von Schwedler; Robert D. Fisher; Ivana De Domenico; Paul L. White; Christopher P. Hill; Jerry Kaplan; Diane M. Ward; Wesley I. Sundquist

ABSTRACT The budding of many enveloped RNA viruses, including human immunodeficiency virus type 1 (HIV-1), requires some of the same cellular machinery as vesicle formation at the multivesicular body (MVB). In Saccharomyces cerevisiae, the ESCRT-II complex performs a central role in MVB protein sorting and vesicle formation, as it is recruited by the upstream ESCRT-I complex and nucleates assembly of the downstream ESCRT-III complex. Here, we report that the three subunits of human ESCRT-II, EAP20, EAP30, and EAP45, have a number of properties in common with their yeast orthologs. Specifically, EAP45 bound ubiquitin via its N-terminal GRAM-like ubiquitin-binding in EAP45 (GLUE) domain, both EAP45 and EAP30 bound the C-terminal domain of TSG101/ESCRT-I, and EAP20 bound the N-terminal half of CHMP6/ESCRT-III. Consistent with its expected role in MVB vesicle formation, (i) human ESCRT-II localized to endosomal membranes in a VPS4-dependent fashion and (ii) depletion of EAP20/ESCRT-II and CHMP6/ESCRT-III inhibited lysosomal targeting and downregulation of the epidermal growth factor receptor, albeit to a lesser extent than depletion of TSG101/ESCRT-I. Nevertheless, HIV-1 release and infectivity were not reduced by efficient small interfering RNA depletion of EAP20/ESCRT-II or CHMP6/ESCRT-III. These observations indicate that there are probably multiple pathways for protein sorting/MVB vesicle formation in human cells and that HIV-1 does not utilize an ESCRT-II-dependent pathway to leave the cell.

Collaboration


Dive into the Diane M. Ward's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barry H. Paw

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wen Chen

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Iman J. Schultz

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge