Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dianhua Jiang is active.

Publication


Featured researches published by Dianhua Jiang.


Nature Medicine | 2005

Regulation of lung injury and repair by Toll-like receptors and hyaluronan

Dianhua Jiang; Jiurong Liang; Juan Fan; Shuang Yu; Suping Chen; Yi Luo; Glenn D Prestwich; Marcella Mascarenhas; Hari G. Garg; Deborah A. Quinn; Robert J. Homer; Daniel R. Goldstein; Richard Bucala; Patty J. Lee; Ruslan Medzhitov; Paul W. Noble

Mechanisms that regulate inflammation and repair after acute lung injury are incompletely understood. The extracellular matrix glycosaminoglycan hyaluronan is produced after tissue injury and impaired clearance results in unremitting inflammation. Here we report that hyaluronan degradation products require MyD88 and both Toll-like receptor (TLR)4 and TLR2 in vitro and in vivo to initiate inflammatory responses in acute lung injury. Hyaluronan fragments isolated from serum of individuals with acute lung injury stimulated macrophage chemokine production in a TLR4- and TLR2-dependent manner. Myd88−/− and Tlr4−/−Tlr2−/− mice showed impaired transepithelial migration of inflammatory cells but decreased survival and enhanced epithelial cell apoptosis after lung injury. Lung epithelial cell–specific overexpression of high-molecular-mass hyaluronan was protective against acute lung injury. Furthermore, epithelial cell–surface hyaluronan was protective against apoptosis, in part, through TLR-dependent basal activation of NF-κB. Hyaluronan-TLR2 and hyaluronan-TLR4 interactions provide signals that initiate inflammatory responses, maintain epithelial cell integrity and promote recovery from acute lung injury.


Physiological Reviews | 2011

Hyaluronan as an Immune Regulator in Human Diseases

Dianhua Jiang; Jiurong Liang; Paul W. Noble

Accumulation and turnover of extracellular matrix components are the hallmarks of tissue injury. Fragmented hyaluronan stimulates the expression of inflammatory genes by a variety of immune cells at the injury site. Hyaluronan binds to a number of cell surface proteins on various cell types. Hyaluronan fragments signal through both Toll-like receptor (TLR) 4 and TLR2 as well as CD44 to stimulate inflammatory genes in inflammatory cells. Hyaluronan is also present on the cell surface of epithelial cells and provides protection against tissue damage from the environment by interacting with TLR2 and TLR4. Hyaluronan and hyaluronan-binding proteins regulate inflammation, tissue injury, and repair through regulating inflammatory cell recruitment, release of inflammatory cytokines, and cell migration. This review focuses on the role of hyaluronan as an immune regulator in human diseases.


Journal of Clinical Investigation | 2004

Regulation of pulmonary fibrosis by chemokine receptor CXCR3.

Dianhua Jiang; Jiurong Liang; Jennifer Hodge; Bao Lu; Zhou Zhu; Shuang Yu; Juan Fan; Yunfei Gao; Zhinan Yin; Robert J. Homer; Craig Gerard; Paul W. Noble

CXC chemokine receptor 3 (CXCR3) is the receptor for the IFN-gamma-inducible C-X-C chemokines MIG/CXCL9, IP-10/CXCL10, and I-TAC/CXCL11. CXCR3 is expressed on activated immune cells and proliferating endothelial cells. The role of CXCR3 in fibroproliferation has not been investigated. We examined the role of CXCR3 in pulmonary injury and repair in vivo. CXCR3-deficient mice demonstrated increased mortality with progressive interstitial fibrosis relative to WT mice. Increased fibrosis occurred without increased inflammatory cell recruitment. CXCR3 deficiency resulted in both a reduced early burst of IFN-gamma production and decreased expression of CXCL10 after lung injury. We identified a relative deficiency in lung NK cells in the unchallenged CXCR3-deficient lung and demonstrated production of IFN-gamma by WT lung NK cells in vivo following lung injury. The fibrotic phenotype in the CXCR3-deficient mice was significantly reversed following administration of exogenous IFN-gamma or restoration of endogenous IFN-gamma production by adoptive transfer of WT lymph node and spleen cells. Finally, pretreatment of WT mice with IFN-gamma-neutralizing Abs enhanced fibrosis following lung injury. These data demonstrate a nonredundant role for CXCR3 in limiting tissue fibroproliferation and suggest that this effect may be mediated, in part, by the innate production of IFN-gamma following lung injury.


Journal of Clinical Investigation | 2012

Pulmonary fibrosis: patterns and perpetrators.

Paul W. Noble; Christina E. Barkauskas; Dianhua Jiang

Pulmonary fibrosis occurs in a variety of clinical settings, constitutes a major cause of morbidity and mortality, and represents an enormous unmet medical need. However, the disease is heterogeneous, and the failure to accurately discern between forms of fibrosing lung diseases leads to inaccurate treatments. Pulmonary fibrosis occurring in the context of connective tissue diseases is often characterized by a distinct pattern of tissue pathology and may be amenable to immunosuppressive therapies. In contrast, idiopathic pulmonary fibrosis (IPF) is a progressive and lethal form of fibrosing lung disease that is recalcitrant to therapies that target the immune system. Although animal models of fibrosis imperfectly recapitulate IPF, they have yielded numerous targets for therapeutic intervention. Understanding the heterogeneity of these diseases and elucidating the final common pathways of fibrogenesis are critical for the development of efficacious therapies for severe fibrosing lung diseases.


Journal of Biological Chemistry | 2008

Extracellular Superoxide Dismutase Inhibits Inflammation by Preventing Oxidative Fragmentation of Hyaluronan

Fei Gao; Jeffrey R. Koenitzer; Jacob M. Tobolewski; Dianhua Jiang; Jiurong Liang; Paul W. Noble; Tim D. Oury

Extracellular superoxide dismutase (EC-SOD) is expressed at high levels in lungs. EC-SOD has a polycationic matrix-binding domain that binds to polyanionic constituents in the matrix. Previous studies indicate that EC-SOD protects the lung in both bleomycin- and asbestos-induced models of pulmonary fibrosis. Although the mechanism of EC-SOD protection is not fully understood, these studies indicate that EC-SOD plays an important role in regulating inflammatory responses to pulmonary injury. Hyaluronan is a polyanionic high molecular mass polysaccharide found in the extracellular matrix that is sensitive to oxidant-mediated fragmentation. Recent studies found that elevated levels of low molecular mass hyaluronan are associated with inflammatory conditions. We hypothesize that EC-SOD may inhibit pulmonary inflammation in part by preventing superoxide-mediated fragmentation of hyaluronan to low molecular mass fragments. We found that EC-SOD directly binds to hyaluronan and significantly inhibits oxidant-induced degradation of this glycosaminoglycan. In vitro human polymorphic neutrophil chemotaxis studies indicate that oxidative fragmentation of hyaluronan results in polymorphic neutrophil chemotaxis and that EC-SOD can completely prevent this response. Intratracheal injection of crocidolite asbestos in mice leads to pulmonary inflammation and injury that is enhanced in EC-SOD knock-out mice. Notably, hyaluronan levels are increased in the bronchoalveolar lavage fluid after asbestos-induced pulmonary injury, and this response is markedly enhanced in EC-SOD knock-out mice. These data indicate that inhibition of oxidative hyaluronan fragmentation probably represents one mechanism by which EC-SOD inhibits inflammation in response to lung injury.


American Journal of Transplantation | 2006

The Role of Hyaluronan Degradation Products as Innate Alloimmune Agonists

Bethany Tesar; Dianhua Jiang; Jiurong Liang; Scott M. Palmer; Paul W. Noble; Daniel R. Goldstein

Dendritic cells (DCs) play a key role in initiating alloimmunity yet the substances that activate them during the host response to transplantation remain elusive. In this study we examined the potential roles of endogenous innate immune agonists in activating dendritic cell‐dependent alloimmunity. Using a murine in vitro culture system, we show that 135 KDa fragments of the extracellular matrix glycosaminoglycan hyaluronan induce dendritic cell maturation and initiate alloimmunity. Priming of alloimmunity by hyaluronan‐activated DCs was dependent on signaling via TIR‐associated protein, a Toll‐like receptor (TLR) adaptor downstream of TLRs 2 and 4. However, this effect was independent of alternate TLR adaptors, MyD88 or Trif. Using an in vivo murine transplant model, we show that hyaluronan accumulated during skin transplant rejection. Examination of human lung transplant recipients demonstrated that increased levels of intragraft hyaluronan were associated with bronchiolitis obliterans syndrome. In conclusion, our study suggests that fragments of hyaluronan can act as innate immune agonists that activate alloimmunity.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Follistatin-like 1 (Fstl1) is a bone morphogenetic protein (BMP) 4 signaling antagonist in controlling mouse lung development

Yan Geng; Yingying Dong; Mingyan Yu; Long Zhang; Xiaohua Yan; Jingxia Sun; Long Qiao; Huixia Geng; Masahiro Nakajima; Tatsuya Furuichi; Shiro Ikegawa; Xiang Gao; Ye-Guang Chen; Dianhua Jiang; Wen Ning

Lung morphogenesis is a well orchestrated, tightly regulated process through several molecular pathways, including TGF-β/bone morphogenetic protein (BMP) signaling. Alteration of these signaling pathways leads to lung malformation. We investigated the role of Follistatin-like 1 (Fstl1), a secreted follistatin-module–containing glycoprotein, in lung development. Deletion of Fstl1 in mice led to postnatal lethality as a result of respiratory failure. Analysis of the mutant phenotype showed that Fstl1 is essential for tracheal cartilage formation and alveolar maturation. Deletion of the Fstl1 gene resulted in malformed tracheal rings manifested as discontinued rings and reduced ring number. Fstl1-deficient mice displayed septal hypercellularity and end-expiratory atelectasis, which were associated with impaired differentiation of distal alveolar epithelial cells and insufficient production of mature surfactant proteins. Mechanistically, Fstl1 interacted directly with BMP4, negatively regulated BMP4/Smad1/5/8 signaling, and inhibited BMP4-induced surfactant gene expression. Reducing BMP signaling activity by Noggin rescued pulmonary atelectasis of Fstl1-deficient mice. Therefore, we provide in vivo and in vitro evidence to demonstrate that Fstl1 modulates lung development and alveolar maturation, in part, through BMP4 signaling.


Journal of Immunology | 2007

CD44 Is a Negative Regulator of Acute Pulmonary Inflammation and Lipopolysaccharide-TLR Signaling in Mouse Macrophages

Jiurong Liang; Dianhua Jiang; Jason W. Griffith; Shuang Yu; Juan Fan; Xiaojian Zhao; Richard Bucala; Paul W. Noble

CD44 is a transmembrane adhesion molecule and hemopoietic CD44 has an essential role in hyaluronan clearance and resolution of noninfectious lung injury. In this study, we examined the role of CD44 in acute pulmonary inflammation and in the regulation of LPS-TLR signaling. Following intratracheally LPS treatment, CD44−/− mice demonstrated an exaggerated inflammatory response characterized by increased inflammatory cell recruitment, elevated chemokine expression in bronchoalveolar lavage fluid, and a marked increase in NF-κB DNA-binding activity in lung tissue in vivo and in macrophages in vitro. Furthermore, CD44−/− mice were more susceptible to LPS-induced shock. Reconstitution of hemopoietic CD44 reversed the inflammatory phenotype. We further found that the induction of the negative regulators of TLR signaling IL-1R-associated kinase-M, Toll-interacting protein, and A20 by intratracheal LPS in vivo and in macrophages in vitro was significantly reduced in CD44−/− mice. Collectively, these data suggest CD44 plays a previously unrecognized role in preventing exaggerated inflammatory responses to LPS by promoting the expression of negative regulators of TLR-4 signaling.


Journal of Clinical Investigation | 2010

Inhibition of pulmonary fibrosis in mice by CXCL10 requires glycosaminoglycan binding and syndecan-4

Dianhua Jiang; Jiurong Liang; Gabriele S. V. Campanella; Rishu Guo; Shuang Yu; Ting Xie; Ningshan Liu; Yoosun Jung; Robert J. Homer; Eric B. Meltzer; Yuejuan Li; Andrew M. Tager; Paul F. Goetinck; Andrew D. Luster; Paul W. Noble

Pulmonary fibrosis is a progressive, dysregulated response to injury culminating in compromised lung function due to excess extracellular matrix production. The heparan sulfate proteoglycan syndecan-4 is important in mediating fibroblast-matrix interactions, but its role in pulmonary fibrosis has not been explored. To investigate this issue, we used intratracheal instillation of bleomycin as a model of acute lung injury and fibrosis. We found that bleomycin treatment increased syndecan-4 expression. Moreover, we observed a marked decrease in neutrophil recruitment and an increase in both myofibroblast recruitment and interstitial fibrosis in bleomycin-treated syndecan-4-null (Sdc4-/-) mice. Subsequently, we identified a direct interaction between CXCL10, an antifibrotic chemokine, and syndecan-4 that inhibited primary lung fibroblast migration during fibrosis; mutation of the heparin-binding domain, but not the CXCR3 domain, of CXCL10 diminished this effect. Similarly, migration of fibroblasts from patients with pulmonary fibrosis was inhibited in the presence of CXCL10 protein defective in CXCR3 binding. Furthermore, administration of recombinant CXCL10 protein inhibited fibrosis in WT mice, but not in Sdc4-/- mice. Collectively, these data suggest that the direct interaction of syndecan-4 and CXCL10 in the lung interstitial compartment serves to inhibit fibroblast recruitment and subsequent fibrosis. Thus, administration of CXCL10 protein defective in CXCR3 binding may represent a novel therapy for pulmonary fibrosis.


Stem Cells | 2012

Airway Epithelial Progenitors Are Region Specific and Show Differential Responses to Bleomycin‐Induced Lung Injury

Huaiyong Chen; Keitaro Matsumoto; Brian Brockway; Craig R. Rackley; Jiurong Liang; Joo-Hyeon Lee; Dianhua Jiang; Paul W. Noble; Scott H. Randell; Carla F. Kim; Barry R. Stripp

Mechanisms that regulate regional epithelial cell diversity and pathologic remodeling in airways are poorly understood. We hypothesized that regional differences in cell composition and injury‐related tissue remodeling result from the type and composition of local progenitors. We used surface markers and the spatial expression pattern of an SFTPC‐GFP transgene to subset epithelial progenitors by airway region. Green fluorescent protein (GFP) expression ranged from undetectable to high in a proximal‐to‐distal gradient. GFPhi cells were subdivided by CD24 staining into alveolar (CD24neg) and conducting airway (CD24low) populations. This allowed for the segregation of three types of progenitors displaying distinct clonal behavior in vitro. GFPneg and GFPlow progenitors both yielded lumen containing colonies but displayed transcriptomes reflective of pseudostratified and distal conducting airways, respectively. CD24lowGFPhi progenitors were present in an overlapping distribution with GFPlow progenitors in distal airways, yet expressed lower levels of Sox2 and expanded in culture to yield undifferentiated self‐renewing progeny. Colony‐forming ability was reduced for each progenitor cell type after in vivo bleomycin exposure, but only CD24lowGFPhi progenitors showed robust expansion during tissue remodeling. These data reveal intrinsic differences in the properties of regional progenitors and suggest that their unique responses to tissue damage drive local tissue remodeling. Stem Cells2012;30:1948–1960

Collaboration


Dive into the Dianhua Jiang's collaboration.

Top Co-Authors

Avatar

Paul W. Noble

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jiurong Liang

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ting Xie

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ningshan Liu

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Huaping Dai

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Adrianne Kurkciyan

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stavros Garantziotis

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge