Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dianna M. Hocking is active.

Publication


Featured researches published by Dianna M. Hocking.


Infection and Immunity | 2012

The Type II Secretion System and Its Ubiquitous Lipoprotein Substrate, SslE, Are Required for Biofilm Formation and Virulence of Enteropathogenic Escherichia coli

Deborah L. Baldi; Ellen E. Higginson; Dianna M. Hocking; J Praszkier; Rosalia Cavaliere; Catherine E. James; Vicki Bennett-Wood; Kristy Azzopardi; Lynne Turnbull; Trevor Lithgow; Roy M. Robins-Browne; Cynthia B. Whitchurch; Marija Tauschek

ABSTRACT Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrhea in infants in developing countries. We have identified a functional type II secretion system (T2SS) in EPEC that is homologous to the pathway responsible for the secretion of heat-labile enterotoxin by enterotoxigenic E. coli. The wild-type EPEC T2SS was able to secrete a heat-labile enterotoxin reporter, but an isogenic T2SS mutant could not. We showed that the major substrate of the T2SS in EPEC is SslE, an outer membrane lipoprotein (formerly known as YghJ), and that a functional T2SS is essential for biofilm formation by EPEC. T2SS and SslE mutants were arrested at the microcolony stage of biofilm formation, suggesting that the T2SS is involved in the development of mature biofilms and that SslE is a dominant effector of biofilm development. Moreover, the T2SS was required for virulence, as infection of rabbits with a rabbit-specific EPEC strain carrying a mutation in either the T2SS or SslE resulted in significantly reduced intestinal colonization and milder disease.


Journal of Molecular Biology | 2009

Bicarbonate-Mediated Stimulation of RegA, the Global Virulence Regulator from Citrobacter rodentium

Ji Yang; Con Dogovski; Dianna M. Hocking; Marija Tauschek; Matthew A. Perugini; Roy M. Robins-Browne

The global virulence regulatory protein RegA, an AraC-like regulator, controls the expression of more than 60 genes in the mouse enteric pathogen Citrobacter rodentium. In the presence of bicarbonate, RegA activates the transcription of a number of virulence determinants and inhibits the expression of a series of housekeeping genes. To elucidate the molecular mechanism by which bicarbonate stimulates RegA activity, we carried out biophysical and mutational analyses. Our data indicate that RegA exists as a dimer in solution regardless of bicarbonate concentration. A leucine zipper, located in the region downstream of the N-terminal domain, is responsible for dimerisation. The N-terminal arm itself is involved in modulating the response to bicarbonate, which appears to bind to a region comprising a series of beta-sheets within the N-terminal domain. The presence of bicarbonate relieves the autoinhibition of RegA activity by its N-terminal arm. RegA is the first example of a bacterial virulence regulator that utilises the light switch mechanism, previously described for the Escherichia coli AraC protein, to respond to a gut-associated effector that controls its activity.


Nature microbiology | 2016

Evolution of atypical enteropathogenic E. coli by repeated acquisition of LEE pathogenicity island variants

Danielle J. Ingle; Marija Tauschek; David J. Edwards; Dianna M. Hocking; Derek Pickard; Kristy Azzopardi; Thakshila Amarasena; Vicki Bennett-Wood; Jaclyn S. Pearson; Boubou Tamboura; Martin Antonio; John B. Ochieng; Joseph Oundo; Inacio Mandomando; Shahida Qureshi; Thandavarayan Ramamurthy; Anowar Hossain; Karen L. Kotloff; James P. Nataro; Gordon Dougan; Myron M. Levine; Roy M. Robins-Browne; Kathryn E. Holt

Atypical enteropathogenic Escherichia coli (aEPEC) is an umbrella term given to E. coli that possess a type III secretion system encoded in the locus of enterocyte effacement (LEE), but lack the virulence factors (stx, bfpA) that characterize enterohaemorrhagic E. coli and typical EPEC, respectively. The burden of disease caused by aEPEC has recently increased in industrialized and developing nations, yet the population structure and virulence profile of this emerging pathogen are poorly understood. Here, we generated whole-genome sequences of 185 aEPEC isolates collected during the Global Enteric Multicenter Study from seven study sites in Asia and Africa, and compared them with publicly available E. coli genomes. Phylogenomic analysis revealed ten distinct widely distributed aEPEC clones. Analysis of genetic variation in the LEE pathogenicity island identified 30 distinct LEE subtypes divided into three major lineages. Each LEE lineage demonstrated a preferred chromosomal insertion site and different complements of non-LEE encoded effector genes, indicating distinct patterns of evolution of these lineages. This study provides the first detailed genomic framework for aEPEC in the context of the EPEC pathotype and will facilitate further studies into the epidemiology and pathogenicity of EPEC by enabling the detection and tracking of specific clones and LEE variants.


PLOS ONE | 2013

Transcriptional Activation of the mrkA Promoter of the Klebsiella pneumoniae Type 3 Fimbrial Operon by the c-di-GMP-Dependent MrkH Protein

Ji Yang; Jonathan J. Wilksch; Jason Wei Han Tan; Dianna M. Hocking; Chaille T. Webb; Trevor Lithgow; Roy M. Robins-Browne; Richard A. Strugnell

The Gram-negative bacterial pathogen Klebsiella pneumoniae forms biofilms to facilitate colonization of biotic and abiotic surfaces. The formation of biofilms by K. pneumoniae requires the expression of type 3 fimbriae: elongate proteinaceous filaments extruded by a chaperone-usher system in the bacterial outer membrane. The expression of the mrkABCDF cluster that encodes this fimbrial system is strongly positively regulated by MrkH, a transcriptional activator that responds to the second messenger, c-di-GMP. In this study, we analyzed the mechanism by which the MrkH protein activates transcriptional initiation from the mrkA promoter. A mutational analysis supported by electrophoretic mobility shift assays demonstrated that a 12-bp palindromic sequence (the MrkH box) centered at −78.5 is the binding site of MrkH. Deletion of half a turn, but not a full turn, of DNA located between the MrkH box and the mrkA promoter destroyed the ability of MrkH to activate mrkA transcription. In addition, a 10-bp AT-rich sequence (the UP element) centered at −63.5 contributed significantly to MrkH-dependent mrkA transcription. In vivo analysis of rpoA mutants showed that the R265 and E273 determinants in the C-terminal domain of RNA polymerase α subunit are needed for MrkH-mediated activation of mrkA transcription. Furthermore, results from mutagenesis of the mrkH gene suggest that the N-terminal region of the protein is involved in transcriptional activation. Taken together, our results suggest that MrkH activates mrkA expression by interacting directly with RNA polymerase, to overcome the inefficient transcriptional initiation caused by the presence of defective core promoter elements.


Journal of Bacteriology | 2010

Transcriptional Analysis of the grlRA Virulence Operon from Citrobacter rodentium

Marija Tauschek; Ji Yang; Dianna M. Hocking; Kristy Azzopardi; Aimee Tan; Emily Hart; J Praszkier; Roy M. Robins-Browne

The locus for enterocyte effacement (LEE) is the virulence hallmark of the attaching-and-effacing (A/E) intestinal pathogens, namely, enteropathogenic Escherichia coli, enterohemorrhagic E. coli, and Citrobacter rodentium. The LEE carries more than 40 genes that are arranged in several operons, e.g., LEE1 to LEE5. Expression of the various transcriptional units is subject to xenogeneic silencing by the histone-like protein H-NS. The LEE1-encoded regulator, Ler, plays a key role in relieving this repression at several major LEE promoters, including LEE2 to LEE5. To achieve appropriate intracellular concentrations of Ler in different environments, A/E pathogens have evolved a sophisticated regulatory network to control ler expression. For example, the LEE-encoded GrlA and GrlR proteins work as activator and antiactivator, respectively, of ler transcription. Thus, control of the transcriptional activities of the LEE1 (ler) promoter and the grlRA operon determines the rate of transcription of all of the LEE-encoded virulence factors. To date, only a single promoter has been identified for the grlRA operon. In this study, we showed that the non-LEE-encoded AraC-like regulatory protein RegA of C. rodentium directly stimulates transcription of the grlRA promoter by binding to an upstream region in the presence of bicarbonate ions. In addition, in vivo and in vitro transcription assays revealed a sigma(70) promoter that is specifically responsible for transcription of grlA. Expression from this promoter was strongly repressed by H-NS and its paralog StpA but was activated by Ler. DNase I footprinting demonstrated that Ler binds to a region upstream of the grlA promoter, whereas H-NS interacts specifically with a region extending from the grlA core promoter into its coding sequence. Together, these findings provide new insights into the environmental regulation and differential expressions of the grlR and grlA genes of C. rodentium.


Materials Science and Engineering: C | 2015

In situ formation of antimicrobial silver nanoparticles and the impregnation of hydrophobic polycaprolactone matrix for antimicrobial medical device applications

Phong A. Tran; Dianna M. Hocking; Andrea J. O'Connor

Bacterial infection associated with medical devices remains a challenge to modern medicine as more patients are being implanted with medical devices that provide surfaces and environment for bacteria colonization. In particular, bacteria are commonly found to adhere more preferably to hydrophobic materials and many of which are used to make medical devices. Bacteria are also becoming increasingly resistant to common antibiotic treatments as a result of misuse and abuse of antibiotics. There is an urgent need to find alternatives to antibiotics in the prevention and treatment of device-associated infections world-wide. Silver nanoparticles have emerged as a promising non-drug antimicrobial agent which has shown effectiveness against a wide range of both Gram-negative and Gram-positive pathogen. However, for silver nanoparticles to be clinically useful, they must be properly incorporated into medical device materials whose wetting properties could be detrimental to not only the incorporation of the hydrophilic Ag nanoparticles but also the release of active Ag ions. This study aimed at impregnating the hydrophobic polycaprolactone (PCL) polymer, which is a FDA-approved polymeric medical device material, with hydrophilic silver nanoparticles. Furthermore, a novel approach was employed to uniformly, incorporate silver nanoparticles into the PCL matrix in situ and to improve the release of Ag ions from the matrix so as to enhance antimicrobial efficacy.


Vaccine | 2012

A totally synthetic lipopeptide-based self-adjuvanting vaccine induces neutralizing antibodies against heat-stable enterotoxin from enterotoxigenic Escherichia coli.

Weiguang Zeng; Kristy Azzopardi; Dianna M. Hocking; Chinn Yi Wong; Gorjana Robevska; Marija Tauschek; Roy M. Robins-Browne; David C. Jackson

ST-based lipopeptide vaccine candidates were constructed in which ST was chemically synthesized and folded into the correct conformation prior to ligation to a module containing a T-helper cell epitope (T(H)) and the Toll-like receptor 2 (TLR2) agonist, S-[2,3-bis(palmitoyloxy)propyl]cysteine (P2C). Two different chemistries, thioether-based and oxime-based, were then used to ligate ST to the lipidated T(H) epitope. The enterotoxic activity of synthetic ST and the ST-based lipopeptide vaccines was determined in mice followed by an evaluation of immunological efficacy. The importance of the fine detail in chemical composition used in vaccine design was demonstrated by the findings that (i) the oxime-based vaccine exhibited little or no toxicity but the thioether-based vaccine, exhibited residual toxicity in suckling mice, (ii) although each of the synthetic vaccines generated specific anti-ST antibodies, it was the low titer antibodies induced by the oxime-based vaccine that demonstrated better neutralizing activity suggesting that the chemical linkage also affects the specificity of antibodies, (iii) the geometric arrangement of ST within a vaccine can profoundly affect the specificity and biological function of the antibodies that are elicited, and (iv) the lipopeptide-based ST vaccine candidate assembled using oxime chemistry induced a better neutralizing antibody response to ST when administered by the mucosal (intranasal) route.


Journal of Biological Chemistry | 2013

Disarming Bacterial Virulence through Chemical Inhibition of the DNA Binding Domain of an AraC-like Transcriptional Activator Protein

Ji Yang; Dianna M. Hocking; Catherine Cheng; Con Dogovski; Matthew A. Perugini; Jessica K. Holien; Michael W. Parker; Elizabeth L. Hartland; Marija Tauschek; Roy M. Robins-Browne

Background: New strategies are needed to combat antibiotic-resistant bacteria. Results: This work identified a small molecule inhibitor, regacin, that specifically disrupts the action of a master virulence regulator from an intestinal pathogen. Conclusion: Inhibition of virulence gene expression by small molecules is a valid therapeutic strategy. Significance: Inhibitors of this kind can be developed into drugs to prevent or treat bacterial infections. The misuse of antibiotics during past decades has led to pervasive antibiotic resistance in bacteria. Hence, there is an urgent need for the development of new and alternative approaches to combat bacterial infections. In most bacterial pathogens the expression of virulence is tightly regulated at the transcriptional level. Therefore, targeting pathogens with drugs that interfere with virulence gene expression offers an effective alternative to conventional antimicrobial chemotherapy. Many Gram-negative intestinal pathogens produce AraC-like proteins that control the expression of genes required for infection. In this study we investigated the prototypical AraC-like virulence regulator, RegA, from the mouse attaching and effacing pathogen, Citrobacter rodentium, as a potential drug target. By screening a small molecule chemical library and chemical optimization, we identified two compounds that specifically inhibited the ability of RegA to activate its target promoters and thus reduced expression of a number of proteins required for virulence. Biophysical, biochemical, genetic, and computational analyses indicated that the more potent of these two compounds, which we named regacin, disrupts the DNA binding capacity of RegA by interacting with amino acid residues within a conserved region of the DNA binding domain. Oral administration of regacin to mice, commencing 15 min before or 12 h after oral inoculation with C. rodentium, caused highly significant attenuation of intestinal colonization by the mouse pathogen comparable to that of an isogenic regA-deletion mutant. These findings demonstrate that chemical inhibition of the DNA binding domains of transcriptional regulators is a viable strategy for the development of antimicrobial agents that target bacterial pathogens.


Frontiers in Cellular and Infection Microbiology | 2016

Are Escherichia coli Pathotypes Still Relevant in the Era of Whole-Genome Sequencing?

Roy M. Robins-Browne; Kathryn E. Holt; Danielle J. Ingle; Dianna M. Hocking; Ji Yang; Marija Tauschek

The empirical and pragmatic nature of diagnostic microbiology has given rise to several different schemes to subtype E.coli, including biotyping, serotyping, and pathotyping. These schemes have proved invaluable in identifying and tracking outbreaks, and for prognostication in individual cases of infection, but they are imprecise and potentially misleading due to the malleability and continuous evolution of E. coli. Whole genome sequencing can be used to accurately determine E. coli subtypes that are based on allelic variation or differences in gene content, such as serotyping and pathotyping. Whole genome sequencing also provides information about single nucleotide polymorphisms in the core genome of E. coli, which form the basis of sequence typing, and is more reliable than other systems for tracking the evolution and spread of individual strains. A typing scheme for E. coli based on genome sequences that includes elements of both the core and accessory genomes, should reduce typing anomalies and promote understanding of how different varieties of E. coli spread and cause disease. Such a scheme could also define pathotypes more precisely than current methods.


Infection and Immunity | 2013

RegR Virulence Regulon of Rabbit-Specific Enteropathogenic Escherichia coli Strain E22

Yogitha N. Srikhanta; Dianna M. Hocking; J Praszkier; Matthew J. Wakefield; Roy M. Robins-Browne; Ji Yang; Marija Tauschek

ABSTRACT AraC-like regulators play a key role in the expression of virulence factors in enteric pathogens, such as enteropathogenic Escherichia coli (EPEC), enterotoxigenic E. coli, enteroaggregative E. coli, and Citrobacter rodentium. Bioinformatic analysis of the genome of rabbit-specific EPEC (REPEC) strain E22 (O103:H2) revealed the presence of a gene encoding an AraC-like regulatory protein, RegR, which shares 71% identity to the global virulence regulator, RegA, of C. rodentium. Microarray analysis demonstrated that RegR exerts 25- to 400-fold activation on transcription of several genes encoding putative virulence-associated factors, including a fimbrial operon (SEF14), a serine protease, and an autotransporter adhesin. These observations were confirmed by proteomic analysis of secreted and heat-extracted surface-associated proteins. The mechanism of RegR-mediated activation was investigated by using its most highly upregulated gene target, sefA. Transcriptional analyses and electrophoretic mobility shift assays showed that RegR activates the expression of sefA by binding to a region upstream of the sefA promoter, thereby relieving gene silencing by the global regulatory protein H-NS. Moreover, RegR was found to contribute significantly to virulence in a rabbit infection experiment. Taken together, our findings indicate that RegR controls the expression of a series of accessory adhesins that significantly enhance the virulence of REPEC strain E22.

Collaboration


Dive into the Dianna M. Hocking's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ji Yang

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J Praszkier

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge