Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dianne Daniels is active.

Publication


Featured researches published by Dianne Daniels.


Circulation | 2007

Iron-Oxide Labeling and Outcome of Transplanted Mesenchymal Stem Cells in the Infarcted Myocardium

Yoram Amsalem; Yael Mardor; Micha S. Feinberg; Natalie Landa; Liron Miller; Dianne Daniels; Aharon Ocherashvilli; Radka Holbova; Orna Yosef; Israel Barbash; Jonathan Leor

Background— Cell labeling with superparamagnetic iron oxide (SPIO) nanoparticles enables noninvasive MRI and tracking of transplanted stem cells. We sought to determine whether mesenchymal stem cell (MSC) outcome is affected by SPIO labeling in a rat model of myocardial infarction. Methods and Results— Rat MSCs were labeled with SPIO (ferumoxides; Endorem; Guerbet, Villepinte, France). By trypan-blue exclusion assay, almost 100% of the cells remained viable after labeling. Seven days after MI, rats were randomized to injections of 2×106 SPIO-labeled MSCs, 2×106 unlabeled MSCs, or saline. Labeled cells were visualized in the infarcted myocardium as large black spots by serial MRI studies throughout the 4-week follow-up. The presence of labeled cells was confirmed by iron staining and real-time polymerase chain reaction on postmortem specimens. At 4 weeks after transplantation, the site of cell injection was infiltrated by inflammatory cells. Costaining for iron and ED1 (resident macrophage marker) showed that the iron-positive cells were cardiac macrophages. By real-time polymerase chain reaction, the Y-chromosome-specific SRY DNA of MSCs from male donors was not detected in infarcted hearts of female recipients. Serial echocardiography studies at baseline and 4 weeks after cell transplantation showed that both unlabeled and labeled MSCs attenuated progressive left ventricular dilatation and dysfunction compared with controls. Conclusions— At 4 weeks after transplantation of SPIO-labeled MSCs, the transplanted cells are not present in the scar and the enhanced MRI signals arise from cardiac macrophages that engulfed the SPIO nanoparticles. However, both labeled and unlabeled cells attenuate left ventricular dilatation and dysfunction after myocardial infarction.


Circulation | 2006

Ex Vivo Activated Human Macrophages Improve Healing, Remodeling, and Function of the Infarcted Heart

Jonathan Leor; Liat Rozen; Adi Zuloff-Shani; Micha S. Feinberg; Yoram Amsalem; Israel Barbash; Erez Kachel; Radka Holbova; Yael Mardor; Dianne Daniels; Aharon Ocherashvilli; Arie Orenstein; David Danon

Background— Activated macrophages have a significant role in wound healing and damaged tissue repair. We sought to explore the ability of ex vivo activated macrophages to promote healing and repair of the infarcted myocardium. Methods and Results— Human activated macrophage suspension (AMS) was prepared from a whole blood unit obtained from young donors in a closed sterile system and was activated by a novel method of hypo-osmotic shock. The AMS (≈4×105 cells) included up to 43% CD14-positive cells and was injected into the ischemic myocardium of rats (n=8) immediately after coronary artery ligation. The control group (n=9) was treated with saline injection. The human cells existed in the infarcted heart 4 to 7 days after injection, as indicated by histology, human growth hormone-specific polymerase chain reaction, and magnetic resonance imaging (MRI) tracking of iron oxide–nanoparticle-labeled cells. After 5 weeks, scar vessel density (±SE) (25±4 versus 10±1 per mm2; P<0.05), myofibroblast accumulation, and recruitment of resident monocytes and macrophages were greater in AMS-treated hearts compared with controls. Serial echocardiography studies, before and 5 weeks after injection, showed that AMS improved scar thickening (0.15±0.01 versus 0.11±0.01 cm; P<0.05), reduced left ventricular (LV) diastolic dilatation (0.87±0.02 versus 0.99±0.04 cm; P<0.05), and improved LV fractional shortening (31±2 versus 20±4%; P<0.05), compared with controls. Conclusions— Early after myocardial infarction, injection of AMS accelerates vascularization, tissue repair, and improves cardiac remodeling and function. Our work suggests a novel clinically relevant option to promote the repair of ischemic tissue.


Cancer Research | 2005

Convection-Enhanced Drug Delivery: Increased Efficacy and Magnetic Resonance Image Monitoring

Yael Mardor; Ofer Rahav; Yacov Zauberman; Zvi Lidar; Aharon Ocherashvilli; Dianne Daniels; Yiftach Roth; Stephan E. Maier; Arie Orenstein; Zvi Ram

Convection-enhanced drug delivery (CED) is a novel approach to directly deliver drugs into brain tissue and brain tumors. It is based on delivering a continuous infusion of drugs via intracranial catheters, enabling convective distribution of high drug concentrations over large volumes of the target tissue while avoiding systemic toxicity. Efficient formation of convection depends on various physical and physiologic variables. Previous convection-based clinical trials showed significant diversity in the extent of convection among patients and drugs. Monitoring convection has proven to be an essential, yet difficult task. The current study describes the application of magnetic resonance imaging for immediate assessment of convection efficiency and early assessment of cytotoxic tissue response in a rat brain model. Immediate assessment of infusate distribution was obtained by mixing Gd-diethylenetriaminepentaacetic acid in the infusate prior to infusion. Early assessment of cytotoxic tissue response was obtained by subsequent diffusion-weighted magnetic resonance imaging. In addition, the latter imaging methodologies were used to establish the correlation between CED extent and infusates viscosity. It was found that low-viscosity infusates tend to backflow along the catheter track, whereas high-viscosity infusates tend to form efficient convection. These results suggest that CED formation and extent may be significantly improved by increasing the infusates viscosities, thus increasing treatment effects.


Neuro-oncology | 2008

Convection-enhanced delivery of maghemite nanoparticles: Increased efficacy and MRI monitoring

Benny Perlstein; Zvi Ram; Dianne Daniels; Aharon Ocherashvilli; Yiftach Roth; Shlomo Margel; Yael Mardor

Convection-enhanced drug delivery (CED) is a novel approach to delivering drugs into brain tissue. Drugs are delivered continuously via a catheter, enabling large volume distributions of high drug concentrations with minimum systemic toxicity. Previously we demonstrated that CED formation/extent of small molecules may be significantly improved by increasing infusate viscosities. In this study we show that the same methodology can be applied to monodispersed maghemite nanoparticles (MNPs). For this purpose we used a normal rat brain model and performed CED of MNPs over short infusion times. By adding 3% sucrose or 3%-6% polyethylene glycol (PEG; molecular weight 400) to saline containing pristine MNPs, we increased infusate viscosity and obtained increased CED efficacy. Further, we show that CED of dextran-coated MNPs (dextran-MNPs) resulted in increased efficacy over pristine MNPs (p < 0.007). To establish the use of MRI for reliable depiction of MNP distribution, CED of fluorescent dextran-MNPs was performed, demonstrating a significant correlation between the distributions as depicted by MRI and spectroscopic images (r(2) = 0.74, p < 0.0002). MRI follow-up showed that approximately 80%-90% of the dextran-MNPs were cleared from the rat brain within 40 days of CED; the rest remained in the brain for more than 4 months. MNPs have been tested for applications such as targeted drug delivery and controlled drug release and are clinically used as a contrast agent for MRI. Thus, combining the CED method with the advantages of MNPs may provide a powerful tool to treat and monitor brain tumors.


PLOS ONE | 2012

MRI study on reversible and irreversible electroporation induced blood brain barrier disruption

Mohammad Hjouj; David Guez; Dianne Daniels; Shirley Sharabi; Jacob Lavee; Boris Rubinsky; Yael Mardor

Electroporation, is known to induce cell membrane permeabilization in the reversible (RE) mode and cell death in the irreversible (IRE) mode. Using an experimental system designed to produce a continuum of IRE followed by RE around a single electrode we used MRI to study the effects of electroporation on the brain. Fifty-four rats were injected with Gd-DOTA and treated with a G25 electrode implanted 5.5 mm deep into the striata. MRI was acquired immediately after treatment, 10 min, 20 min, 30 min, and up to three weeks following the treatment using: T1W, T2W, Gradient echo (GE), serial SPGR (DCE-MRI) with flip angles ranging over 5–25°, and diffusion-weighted MRI (DWMRI). Blood brain barrier (BBB) disruption was depicted as clear enhancement on T1W images. The average signal intensity in the regions of T1-enhancement, representing BBB disruption, increased from 1887±83 (arbitrary units) immediately post treatment to 2246±94 20 min post treatment, then reached a plateau towards the 30 min scan where it reached 2289±87. DWMRI at 30 min showed no significant effects. Early treatment effects and late irreversible damage were clearly depicted on T2W. The enhancing volume on T2W has increased by an average of 2.27±0.27 in the first 24–48 hours post treatment, suggesting an inflammatory tissue response. The permanent tissue damage, depicted as an enhancing region on T2W, 3 weeks post treatment, decreased to an average of 50±10% of the T2W enhancing volumes on the day of the treatment which was 33±5% of the BBB disruption volume. Permanent tissue damage was significantly smaller than the volume of BBB disruption, suggesting, that BBB disruption is associated with RE while tissue damage with IRE. These results demonstrate the feasibility of applying reversible and irreversible electroporation for transient BBB disruption or permanent damage, respectively, and applying MRI for planning/monitoring disruption volume/shape by optimizing electrode positions and treatment parameters.


International Journal of Nanomedicine | 2011

Convection-enhanced delivery of methotrexate-loaded maghemite nanoparticles.

Enav Corem-Salkmon; Zvi Ram; Dianne Daniels; Benny Perlstein; Sharona Salomon; Gregory Tamar; Ran Shneor; David Guez; Shlomo Margel; Yael Mardor

Convection-enhanced delivery (CED) is a novel approach for delivering drugs directly into brain tumors by intracranial infusion, enabling the distribution of high drug concentrations over large tissue volumes. This study was designed to present a method for binding methotrexate (MTX) to unique crystalline, highly ordered and superparamagnetic maghemite nanoparticles via human serum albumin (HSA) coating, optimized for CED treatments of gliomas. Naked nanoparticles and HSA- or polyethylene glycol (PEG)-coated nanoparticles with/without MTX were studied. In vitro results showed no toxicity and a similar cell-kill efficacy of the MTX-loaded particles via HSA coating to that of free MTX, while MTX-loaded particles via PEG coating showed low efficacy. In vivo, the PEG-coated nanoparticles provided the largest distributions in normal rat brain and long clearance times, but due to their low efficacy in vitro, were not considered optimal. The naked nanoparticles provided the smallest distributions and shortest clearance times. The HSA-coated nanoparticles (with/without MTX) provided good distributions and long clearance times (nearly 50% of the distribution volume remained in the brain 3 weeks post treatment). No MTX-related toxicity was noted. These results suggest that the formulation in which HSA was bound to our nanoparticles via a unique precipitation method, and MTX was bound covalently to the HSA, could enable efficient and stable drug loading with no apparent toxicity. The cell-kill efficacy of the bound MTX remained similar to that of free MTX, and the nanoparticles presented efficient distribution volumes and slow clearance times in vivo, suggesting that these particles are optimal for CED.


Molecular Cancer Therapeutics | 2008

Salirasib (farnesyl thiosalicylic acid) for brain tumor treatment: a convection-enhanced drug delivery study in rats

Liat Goldberg; Aharon Ocherashvilli; Dianne Daniels; Zvi R. Cohen; Gregory Tamar; Yael Mardor

Our aim was to assess the ability of convection-enhanced drug delivery (CED), a novel approach of direct delivery of drugs into brain tissue and brain tumors, to treat brain tumors using salirasib (farsnesyl thiosalicylic acid). CED was achieved by continuous infusion of drugs via intracranial catheters, thus enabling convective distribution of high drug concentrations over large volumes while avoiding systemic toxicity. Several phase II/III CED-based trials are currently in progress but have yet to overcome two major pitfalls of this methodology (the difficulty in attaining efficient CED and the significant nonspecific neurotoxicity caused by high drug doses in the brain). In this study, we addressed both issues by employing our previously described novel CED imaging and increased efficiency methodologies to exclusively target the activated form of the Ras oncogene in a 9L gliosarcoma rat model. The drug we used was salirasib, a highly specific Ras inhibitor shown to exert its suppressive effects on growth and migration of proliferating tumor cells in in vitro and in vivo models, including human glioblastoma, without affecting normal tissues. The results show a significant decrease in tumor growth rate in salirasib-treated rats relative to vehicle-treated rats as well as a significant correlation between CED efficacy and tumor growth rate with no observed toxicity despite drug concentrations an order of magnitude higher than previously detected in the brain. The results show that CED of salirasib is efficient and nontoxic for the treatment of glioblastoma in a rat model, thus suggesting that it may be considered for clinical application. [Mol Cancer Ther 2008;7(11):3609–16]


Neuro-oncology | 2015

Delayed contrast extravasation MRI: a new paradigm in neuro-oncology

Leor Zach; David Guez; Dianne Daniels; Yuval Grober; Ouzi Nissim; Chen Hoffmann; Dvora Nass; Alisa Talianski; Roberto Spiegelmann; Galia Tsarfaty; Sharona Salomon; Moshe Hadani; Andrew A. Kanner; Deborah T. Blumenthal; Felix Bukstein; Michal Yalon; Jacob Zauberman; Jonathan Roth; Yigal Shoshan; Evgeniya Fridman; Marc Wygoda; Dror Limon; Tzahala Tzuk; Zvi R. Cohen; Yael Mardor

BACKGROUND Conventional magnetic resonance imaging (MRI) is unable to differentiate tumor/nontumor enhancing tissues. We have applied delayed-contrast MRI for calculating high resolution treatment response assessment maps (TRAMs) clearly differentiating tumor/nontumor tissues in brain tumor patients. METHODS One hundred and fifty patients with primary/metastatic tumors were recruited and scanned by delayed-contrast MRI and perfusion MRI. Of those, 47 patients underwent resection during their participation in the study. Region of interest/threshold analysis was performed on the TRAMs and on relative cerebral blood volume maps, and correlation with histology was studied. Relative cerebral blood volume was also assessed by the study neuroradiologist. RESULTS Histological validation confirmed that regions of contrast agent clearance in the TRAMs >1 h post contrast injection represent active tumor, while regions of contrast accumulation represent nontumor tissues with 100% sensitivity and 92% positive predictive value to active tumor. Significant correlation was found between tumor burden in the TRAMs and histology in a subgroup of lesions resected en bloc (r(2) = 0.90, P < .0001). Relative cerebral blood volume yielded sensitivity/positive predictive values of 51%/96% and there was no correlation with tumor burden. The feasibility of applying the TRAMs for differentiating progression from treatment effects, depicting tumor within hemorrhages, and detecting residual tumor postsurgery is demonstrated. CONCLUSIONS The TRAMs present a novel model-independent approach providing efficient separation between tumor/nontumor tissues by adding a short MRI scan >1 h post contrast injection. The methodology uses robust acquisition sequences, providing high resolution and easy to interpret maps with minimal sensitivity to susceptibility artifacts. The presented results provide histological validation of the TRAMs and demonstrate their potential contribution to the management of brain tumor patients.


PLOS ONE | 2012

Delayed Contrast Extravasation MRI for Depicting Tumor and Non-Tumoral Tissues in Primary and Metastatic Brain Tumors

Leor Zach; David Guez; Dianne Daniels; Yuval Grober; Ouzi Nissim; Chen Hoffmann; Dvora Nass; Alisa Talianski; Roberto Spiegelmann; Zvi R. Cohen; Yael Mardor

The current standard of care for newly diagnosed glioblastoma multiforme (GBM) is resection followed by radiotherapy with concomitant and adjuvant temozolomide. Recent studies suggest that nearly half of the patients with early radiological deterioration post treatment do not suffer from tumor recurrence but from pseudoprogression. Similarly, a significant number of patients with brain metastases suffer from radiation necrosis following radiation treatments. Conventional MRI is currently unable to differentiate tumor progression from treatment-induced effects. The ability to clearly differentiate tumor from non-tumoral tissues is crucial for appropriate patient management. Ten patients with primary brain tumors and 10 patients with brain metastases were scanned by delayed contrast extravasation MRI prior to surgery. Enhancement subtraction maps calculated from high resolution MR images acquired up to 75 min after contrast administration were used for obtaining stereotactic biopsies. Histological assessment was then compared with the pre-surgical calculated maps. In addition, the application of our maps for prediction of progression was studied in a small cohort of 13 newly diagnosed GBM patients undergoing standard chemoradiation and followed up to 19.7 months post therapy. The maps showed two primary enhancement populations: the slow population where contrast clearance from the tissue was slower than contrast accumulation and the fast population where clearance was faster than accumulation. Comparison with histology confirmed the fast population to consist of morphologically active tumor and the slow population to consist of non-tumoral tissues. Our maps demonstrated significant correlation with perfusion-weighted MR data acquired simultaneously, although contradicting examples were shown. Preliminary results suggest that early changes in the fast volumes may serve as a predictor for time to progression. These preliminary results suggest that our high resolution MRI-based delayed enhancement subtraction maps may be applied for clear depiction of tumor and non-tumoral tissues in patients with primary brain tumors and patients with brain metastases.


Journal of Pharmacology and Experimental Therapeutics | 2009

Convection-enhanced drug delivery of interleukin-4 Pseudomonas exotoxin (PRX321): Increased distribution and magnetic resonance monitoring

Yael Mardor; Dianne Daniels; Ran Shneor; Stephan E. Maier; Dvora Nass; Zvi Ram

Convection-enhanced drug delivery (CED) enables achieving a drug concentration within brain tissue and brain tumors that is orders of magnitude higher than by systemic administration. Previous phase I/II clinical trials using intratumoral convection of interleukin-4 Pseudomonas exotoxin (PRX321) have demonstrated an acceptable safety and toxicity profile with promising signs of therapeutic activity. The present study was designed to assess the distribution efficiency and toxicity of this PRX321 using magnetic resonance imaging (MRI) and to test whether reformulation with increased viscosity could enhance drug distribution. Convection of low- [0.02% human serum albumin (HSA)] and high-viscosity (3% HSA) infusates mixed with gadolinium-diethylenetriamine pentaacetic acid and PRX321 were compared with low- and high-viscosity infusates without the drug, in normal rat brains. MRI was used for assessment of drug distribution and detection of early and late toxicity. Representative brain samples were subjected to histological examination. Distribution volumes calculated from the magnetic resonance images showed that the average distribution of 0.02% HSA was larger than that of 0.02% HSA with PRX321 by a factor of 1.98 (p < 0.02). CED of 3.0% HSA, with or without PRX321, tripled the volume of distribution compared with 0.02% HSA with PRX321 (p < 0.015). No drug-related toxicity was detected. These results suggest that the impeded convection of the PRX321 infusate used in previous clinical trials can be reversed by increasing infusate viscosity and lead to tripling of the volume of distribution. This effect was not associated with any detectable toxicity. A similar capability to reverse impeded convection was also demonstrated in a CED model using acetic acid. These results will be implemented in an upcoming phase IIb PRX321 CED trial with a high-viscosity infusate.

Collaboration


Dive into the Dianne Daniels's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yael Mardor

Advanced Technology Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge