Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dianne Gerrelli is active.

Publication


Featured researches published by Dianne Gerrelli.


American Journal of Human Genetics | 2005

Heterozygous mutations of OTX2 cause severe ocular malformations

Nicola Ragge; Alison Brown; Charlotte M. Poloschek; Birgit Lorenz; R. Alex Henderson; Michael P. Clarke; Isabelle Russell-Eggitt; Alistair R. Fielder; Dianne Gerrelli; Juan Pedro Martinez-Barbera; Piers Ruddle; Jane L. Hurst; J. Richard O. Collin; Alison Salt; Simon T. Cooper; Pamela J. Thompson; Sanjay M. Sisodiya; Kathleen A. Williamson; David Fitzpatrick; Veronica van Heyningen; Isabel M. Hanson

Major malformations of the human eye, including microphthalmia and anophthalmia, are examples of phenotypes that recur in families yet often show no clear Mendelian inheritance pattern. Defining loci by mapping is therefore rarely feasible. Using a candidate-gene approach, we have identified heterozygous coding-region changes in the homeobox gene OTX2 in eight families with ocular malformations. The expression pattern of OTX2 in human embryos is consistent with the eye phenotypes observed in the patients, which range from bilateral anophthalmia to retinal defects resembling Leber congenital amaurosis and pigmentary retinopathy. Magnetic resonance imaging scans revealed defects of the optic nerve, optic chiasm, and, in some cases, brain. In two families, the mutations appear to have occurred de novo in severely affected offspring, and, in two other families, the mutations have been inherited from a gonosomal mosaic parent. Data from these four families support a simple model in which OTX2 heterozygous loss-of-function mutations cause ocular malformations. Four additional families display complex inheritance patterns, suggesting that OTX2 mutations alone may not lead to consistent phenotypes. The high incidence of mosaicism and the reduced penetrance have implications for genetic counseling.


Development | 2007

Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure

Patricia Ybot-Gonzalez; Dawn Savery; Dianne Gerrelli; Massimo Signore; Claire E. Mitchell; Clare H. Faux; Nicholas D.E. Greene; Andrew J. Copp

Planar-cell-polarity (PCP) signalling is necessary for initiation of neural tube closure in higher vertebrates. In mice with PCP gene mutations, a broad embryonic midline prevents the onset of neurulation through wide spacing of the neural folds. In order to evaluate the role of convergent extension in this defect, we vitally labelled the midline of loop-tail (Lp) embryos mutant for the PCP gene Vangl2. Injection of DiI into the node, and electroporation of a GFP expression vector into the midline neural plate, revealed defective convergent extension in both axial mesoderm and neuroepithelium, before the onset of neurulation. Chimeras containing both wild-type and Lp-mutant cells exhibited mainly wild-type cells in the midline neural plate and notochordal plate, consistent with a cell-autonomous disturbance of convergent extension. Inhibitor studies in whole-embryo culture demonstrated a requirement for signalling via RhoA-Rho kinase, but not jun N-terminal kinase, in convergent extension and the onset of neural tube closure. These findings identify a cell-autonomous defect of convergent extension, requiring PCP signalling via RhoA-Rho kinase, during the development of severe neural tube defects in the mouse.


Mechanisms of Development | 1998

Abnormalities of floor plate, notochord and somite differentiation in the loop-tail (Lp) mouse: a model of severe neural tube defects

Nicholas D.E. Greene; Dianne Gerrelli; Henny W. M. van Straaten; Andrew J. Copp

Mouse embryos homozygous for the loop-tail (Lp) mutation fail to initiate neural tube closure at E8.5, leading to a severe malformation in which the neural tube remains open from midbrain to tail. During initiation of closure, the normal mouse neural plate bends sharply in the midline, at the site of the future floor plate. In contrast, Lp/Lp embryos exhibit a broad region of flat neural plate in the midline, displacing the sites of neuroepithelial bending to more lateral positions. Sonic hedgehog (Shh) and Netrin1 are expressed in abnormally broad domains in the ventral midline of the E9.5 Lp/Lp neural tube, suggesting over-abundant differentiation of the floor plate. The notochord is also abnormally broad in Lp/Lp embryos with enlarged domains of Shh and Brachyury expression. The paraxial mesoderm shows evidence of ventralisation, with increased expression of the sclerotomal marker Pax1, and diminished expression of the dermomyotomal marker Pax3. While the expression domain of Pax3 does not differ markedly from wild-type, there is a dorsal shift in the domain of Pax6 expression in the neural tube at caudal levels of Lp/Lp embryos. We suggest that the Lp mutation causes excessive differentiation of floor-plate and notochord, with over-production of Shh from these midline structures causing ventralisation of the paraxial mesoderm and, to a lesser extent, the neural tube. Comparison with other mouse mutants suggests that the enlarged floor plate may be responsible for the failure of neural tube closure in Lp/Lp embryos.


The Journal of Clinical Endocrinology and Metabolism | 2008

SOX2 Plays a Critical Role in the Pituitary, Forebrain, and Eye during Human Embryonic Development

Daniel Kelberman; Sandra C.P. De Castro; Shuwen Huang; John A. Crolla; Rodger Palmer; John Welbourn Gregory; David Taylor; Luciano Cavallo; Maria Felicia Faienza; Rita Fischetto; John C. Achermann; Juan Pedro Martinez-Barbera; Karine Rizzoti; Robin Lovell-Badge; Iain C. A. F. Robinson; Dianne Gerrelli; Mehul T. Dattani

CONTEXT Heterozygous, de novo mutations in the transcription factor SOX2 are associated with bilateral anophthalmia or severe microphthalmia and hypopituitarism. Variable additional abnormalities include defects of the corpus callosum and hippocampus. OBJECTIVE We have ascertained a further three patients with severe eye defects and pituitary abnormalities who were screened for mutations in SOX2. To provide further evidence of a direct role for SOX2 in hypothalamo-pituitary development, we have studied the expression of the gene in human embryonic tissues. RESULTS All three patients harbored heterozygous SOX2 mutations: a deletion encompassing the entire gene, an intragenic deletion (c.70_89del), and a novel nonsense mutation (p.Q61X) within the DNA binding domain that results in impaired transactivation. We also show that human SOX2 can inhibit beta-catenin-driven reporter gene expression in vitro, whereas mutant SOX2 proteins are unable to repress efficiently this activity. Furthermore, we show that SOX2 is expressed throughout the human brain, including the developing hypothalamus, as well as Rathkes pouch, the developing anterior pituitary, and the eye. CONCLUSIONS Patients with SOX2 mutations often manifest the unusual phenotype of hypogonadotropic hypogonadism, with sparing of other pituitary hormones despite anterior pituitary hypoplasia. SOX2 expression patterns in human embryonic development support a direct involvement of the protein during development of tissues affected in these individuals. Given the critical role of Wnt-signaling in the development of most of these tissues, our data suggest that a failure to repress the Wnt-beta-catenin pathway could be one of the underlying pathogenic mechanisms associated with loss-of-function mutations in SOX2.


American Journal of Human Genetics | 2009

Frontorhiny, a Distinctive Presentation of Frontonasal Dysplasia Caused by Recessive Mutations in the ALX3 Homeobox Gene

Stephen R.F. Twigg; Sarah L. Versnel; Gudrun Nürnberg; Melissa Lees; Meenakshi Bhat; Peter Hammond; Raoul C. M. Hennekam; A. Jeannette M. Hoogeboom; Jane A. Hurst; David Johnson; Alexis Robinson; Peter J. Scambler; Dianne Gerrelli; Peter Nürnberg; Irene M.J. Mathijssen; Andrew O.M. Wilkie

We describe a recessively inherited frontonasal malformation characterized by a distinctive facial appearance, with hypertelorism, wide nasal bridge, short nasal ridge, bifid nasal tip, broad columella, widely separated slit-like nares, long philtrum with prominent bilateral swellings, and midline notch in the upper lip and alveolus. Additional recurrent features present in a minority of individuals have been upper eyelid ptosis and midline dermoid cysts of craniofacial structures. Assuming recessive inheritance, we mapped the locus in three families to chromosome 1 and identified mutations in ALX3, which is located at band 1p13.3 and encodes the aristaless-related ALX homeobox 3 transcription factor. In total, we identified seven different homozygous pathogenic mutations in seven families. These mutations comprise missense substitutions at critical positions within the conserved homeodomain as well as nonsense, frameshift, and splice-site mutations, all predicting severe or complete loss of function. Our findings contrast with previous studies of the orthologous murine gene, which showed no phenotype in Alx3(-/-) homozygotes, apparently as a result of functional redundancy with the paralogous Alx4 gene. We conclude that ALX3 is essential for normal facial development in humans and that deficiency causes a clinically recognizable phenotype, which we term frontorhiny.


Human Molecular Genetics | 2008

Novel mutations in LHX3 are associated with hypopituitarism and sensorineural hearing loss

Anna Rajab; Sandra C.P. De Castro; Heike Biebermann; Hala Shaikh; Kerra Pearce; Catherine M. Hall; Guftar Shaikh; Dianne Gerrelli; Annette Grueters; Heiko Krude; Mehul T. Dattani

Homozygous loss-of-function mutations in the transcription factor LHX3 have been associated with hypopituitarism with structural anterior pituitary defects and cervical abnormalities with or without restricted neck rotation. We report two novel recessive mutations in LHX3 in four patients from two unrelated pedigrees. Clinical evaluation revealed that all four patients exhibit varying degrees of bilateral sensorineural hearing loss, which has not been previously reported in association with LHX3 mutations, in addition to hypopituitarism including adrenocorticotropic hormone deficiency and an unusual skin and skeletal phenotype in one family. Furthermore, re-evaluation of three patients previously described with LHX3 mutations showed they also exhibit varying degrees of bilateral sensorineural hearing loss. We have investigated a possible role for LHX3 in inner ear development in humans using in situ hybridization of human embryonic and fetal tissue. LHX3 is expressed in defined regions of the sensory epithelium of the developing inner ear in a pattern overlapping that of SOX2, which precedes the onset of LHX3 expression and is known to be required for inner ear and pituitary development in both mice and humans. Moreover, we show that SOX2 is capable of binding to and activating transcription of the LHX3 proximal promoter in vitro. This study therefore extends the phenotypic spectrum associated with LHX3 mutations to encompass variable sensorineural hearing loss and suggests a possible interaction between LHX3 and SOX2 likely to be important for development of both the inner ear and the anterior pituitary in human embryonic development.


The Journal of Clinical Endocrinology and Metabolism | 2011

Novel FGF8 mutations associated with recessive holoprosencephaly, craniofacial defects, and hypothalamo-pituitary dysfunction

Mark J. McCabe; Carles Gaston-Massuet; Vaitsa Tziaferi; Louise Gregory; Kyriaki S. Alatzoglou; Massimo Signore; Eduardo Puelles; Dianne Gerrelli; I. Sadaf Farooqi; Jamal Raza; Joanna Walker; Scott I. Kavanaugh; Pei-San Tsai; Nelly Pitteloud; Juan Pedro Martinez-Barbera; Mehul T. Dattani

CONTEXT Fibroblast growth factor (FGF) 8 is important for GnRH neuronal development with human mutations resulting in Kallmann syndrome. Murine data suggest a role for Fgf8 in hypothalamo-pituitary development; however, its role in the etiology of wider hypothalamo-pituitary dysfunction in humans is unknown. OBJECTIVE The objective of this study was to screen for FGF8 mutations in patients with septo-optic dysplasia (n = 374) or holoprosencephaly (HPE)/midline clefts (n = 47). METHODS FGF8 was analyzed by PCR and direct sequencing. Ethnically matched controls were then screened for mutated alleles (n = 480-686). Localization of Fgf8/FGF8 expression was analyzed by in situ hybridization in developing murine and human embryos. Finally, Fgf8 hypomorphic mice (Fgf8(loxPNeo/-)) were analyzed for the presence of forebrain and hypothalamo-pituitary defects. RESULTS A homozygous p.R189H mutation was identified in a female patient of consanguineous parentage with semilobar HPE, diabetes insipidus, and TSH and ACTH insufficiency. Second, a heterozygous p.Q216E mutation was identified in a female patient with an absent corpus callosum, hypoplastic optic nerves, and Moebius syndrome. FGF8 was expressed in the ventral diencephalon and anterior commissural plate but not in Rathkes pouch, strongly suggesting early onset hypothalamic and corpus callosal defects in these patients. This was consolidated by significantly reduced vasopressin and oxytocin staining neurons in the hypothalamus of Fgf8 hypomorphic mice compared with controls along with variable hypothalamo-pituitary defects and HPE. CONCLUSION We implicate FGF8 in the etiology of recessive HPE and potentially septo-optic dysplasia/Moebius syndrome for the first time to our knowledge. Furthermore, FGF8 is important for the development of the ventral diencephalon, hypothalamus, and pituitary.


Journal of Medical Genetics | 2011

Rare familial 16q21 microdeletions under a linkage peak implicate cadherin 8 ( CDH8 ) in susceptibility to autism and learning disability

Alistair T. Pagnamenta; Hameed Khan; Susan Walker; Dianne Gerrelli; Kirsty Wing; Maria Clara Bonaglia; Roberto Giorda; Tom Berney; Elisa Mani; Massimo Molteni; Dalila Pinto; Ann Le Couteur; Joachim Hallmayer; James S. Sutcliffe; Peter Szatmari; Andrew D. Paterson; Stephen W. Scherer; Veronica J. Vieland; Anthony P. Monaco

Background Autism spectrum disorder (ASD) is characterised by impairments in social communication and by a pattern of repetitive behaviours, with learning disability (LD) typically seen in up to 70% of cases. A recent study using the PPL statistical framework identified a novel region of genetic linkage on chromosome 16q21 that is limited to ASD families with LD. Methods In this study, two families with autism and/or LD are described which harbour rare >1.6 Mb microdeletions located within this linkage region. The deletion breakpoints are mapped at base-pair resolution and segregation analysis is performed using a combination of 1M single nucleotide polymorphism (SNP) technology, array comparative genomic hybridisation (CGH), long-range PCR, and Sanger sequencing. The frequency of similar genomic variants in control subjects is determined through analysis of published SNP array data. Expression of CDH8, the only gene disrupted by these microdeletions, is assessed using reverse transcriptase PCR and in situ hybridisation analysis of 9 week human embryos. Results The deletion of chr16: 60 025 584–61 667 839 was transmitted to three of three boys with autism and LD and none of four unaffected siblings, from their unaffected mother. In a second family, an overlapping deletion of chr16: 58 724 527–60 547 472 was transmitted to an individual with severe LD from his father with moderate LD. No copy number variations (CNVs) disrupting CDH8 were observed in 5023 controls. Expression analysis indicates that the two CDH8 isoforms are present in the developing human cortex. Conclusion Rare familial 16q21 microdeletions and expression analysis implicate CDH8 in susceptibility to autism and LD.


PLOS ONE | 2011

Human RSPO1/R-spondin1 Is Expressed during Early Ovary Development and Augments β-Catenin Signaling

Sara Tomaselli; Francesca Megiorni; Lin Lin; Maria Cristina Mazzilli; Dianne Gerrelli; Silvia Majore; Paola Grammatico; John C. Achermann

Human testis development starts from around 42 days post conception with a transient wave of SRY expression followed by up-regulation of testis specific genes and a distinct set of morphological, paracrine and endocrine events. Although anatomical changes in the ovary are less marked, a distinct sub-set of ovary specific genes are also expressed during this time. The furin-domain containing peptide R-spondin1 (RSPO1) has recently emerged as an important regulator of ovary development through up-regulation of the WNT/β-catenin pathway to oppose testis formation. Here, we show that RSPO1 is upregulated in the ovary but not in the testis during critical early stages of gonad development in humans (between 6–9 weeks post conception), whereas the expression of the related genes WNT4 and CTNNB1 (encoding β catenin) is not significantly different between these tissues. Furthermore, reduced R-spondin1 function in the ovotestis of an individual (46,XX) with a RSPO1 mutation leads to reduced β-catenin protein and WNT4 mRNA levels, consistent with down regulation of ovarian pathways. Transfection of wild-type RSPO1 cDNA resulted in weak dose-dependent activation of a β-catenin responsive TOPFLASH reporter (1.8 fold maximum), whereas co-transfection of CTNNB1 (encoding β-catenin) with RSPO1 resulted in dose-dependent synergistic augmentation of this reporter (approximately 10 fold). Furthermore, R-spondin1 showed strong nuclear localization in several different cell lines. Taken together, these data show that R-spondin1 is upregulated during critical stages of early human ovary development and may function as a tissue-specific amplifier of β-catenin signaling to oppose testis determination.


Human Genetics | 2009

Reduced TFAP2A function causes variable optic fissure closure and retinal defects and sensitizes eye development to mutations in other morphogenetic regulators

Gaia Gestri; Robert J. Osborne; Alexander W. Wyatt; Dianne Gerrelli; Susan M. Gribble; Helen Stewart; Alan Fryer; David J. Bunyan; Katrina Prescott; J. Richard O. Collin; Tomas Fitzgerald; David O. Robinson; Nigel P. Carter; Stephen W. Wilson; Nicola Ragge

Mutations in the transcription factor encoding TFAP2A gene underlie branchio-oculo-facial syndrome (BOFS), a rare dominant disorder characterized by distinctive craniofacial, ocular, ectodermal and renal anomalies. To elucidate the range of ocular phenotypes caused by mutations in TFAP2A, we took three approaches. First, we screened a cohort of 37 highly selected individuals with severe ocular anomalies plus variable defects associated with BOFS for mutations or deletions in TFAP2A. We identified one individual with a de novo TFAP2A four amino acid deletion, a second individual with two non-synonymous variations in an alternative splice isoform TFAP2A2, and a sibling-pair with a paternally inherited whole gene deletion with variable phenotypic expression. Second, we determined that TFAP2A is expressed in the lens, neural retina, nasal process, and epithelial lining of the oral cavity and palatal shelves of human and mouse embryos—sites consistent with the phenotype observed in patients with BOFS. Third, we used zebrafish to examine how partial abrogation of the fish ortholog of TFAP2A affects the penetrance and expressivity of ocular phenotypes due to mutations in genes encoding bmp4 or tcf7l1a. In both cases, we observed synthetic, enhanced ocular phenotypes including coloboma and anophthalmia when tfap2a is knocked down in embryos with bmp4 or tcf7l1a mutations. These results reveal that mutations in TFAP2A are associated with a wide range of eye phenotypes and that hypomorphic tfap2a mutations can increase the risk of developmental defects arising from mutations at other loci.

Collaboration


Dive into the Dianne Gerrelli's collaboration.

Top Co-Authors

Avatar

Andrew J. Copp

University College London

View shared research outputs
Top Co-Authors

Avatar

John C. Achermann

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar

Lin Lin

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Duncan

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar

Chloe Santos

University College London

View shared research outputs
Top Co-Authors

Avatar

Mehul T. Dattani

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar

Nicola Ragge

Oxford Brookes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martino Barenco

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge