Dianrong Li
Huazhong University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dianrong Li.
PLOS ONE | 2013
Xiaodong Wang; Hao Wang; Yan Long; Dianrong Li; Yongtai Yin; Jianhua Tian; Li Chen; Liezhao Liu; Weiguo Zhao; Yajun Zhao; Longjiang Yu; Maoteng Li
Increasing seed oil content is one of the most important goals in breeding of rapeseed (B. napus L.). To dissect the genetic basis of oil content in B. napus, a large and new double haploid (DH) population containing 348 lines was obtained from a cross between ‘KenC-8’ and ‘N53-2’, two varieties with >10% difference in seed oil content, and this population was named the KN DH population. A genetic linkage map consisting of 403 markers was constructed, which covered a total length of 1783.9 cM with an average marker interval of 4.4 cM. The KN DH population was phenotyped in eight natural environments and subjected to quantitative trait loci (QTL) analysis for oil content. A total of 63 identified QTLs explaining 2.64–17.88% of the phenotypic variation were identified, and these QTLs were further integrated into 24 consensus QTLs located on 11 chromosomes using meta-analysis. A high-density consensus map with 1335 marker loci was constructed by combining the KN DH map with seven other published maps based on the common markers. Of the 24 consensus QTLs in the KN DH population, 14 were new QTLs including five new QTLs in A genome and nine in C genome. The analysis revealed that a larger population with significant differences in oil content gave a higher power detecting new QTLs for oil content, and the construction of the consensus map provided a new clue for comparing the QTLs detected in different populations. These findings enriched our knowledge of QTLs for oil content and should be a potential in marker-assisted breeding of B. napus.
Journal of Microbiology | 2012
Ting Xu; Fei Yao; Wu-Sheng Liang; Yonghong Li; Dianrong Li; Hao Wang; Zheng-Yi Wang
Sclerotinia sclerotiorum is a cosmopolitan, filamentous, fungal pathogen that can cause serious disease in many kinds of crops. Alternative oxidase is the terminal oxidase of the alternative mitochondrial respiratory pathway in fungi and higher plants. We report the presence of this alternative pathway respiration and demonstrate its expression in two isolates of S. sclerotiorum under unstressed, normal culture conditions. Application of salicylhydroxamic acid, a specific inhibitor of alternative oxidase, severely inhibited the mycelial growth of S. sclerotiorum both on potato dextrose agar plates and in liquid culture media. Inhibition of alternative oxidase could influence the growth pattern of S. sclerotiorum, as salicylhydroxamic acid treatment induced obvious aerial mycelia growing on potato dextrose agar plates. Under the treatment with salicylhydroxamic acid, S. sclerotiorum formed sclerotia much more slowly than the control. Treatment with hydrogen peroxide in millimolar concentrations greatly decreased the growth rate of mycelia and delayed the formation of sclerotia in both tested S. sclerotiorum isolates. As well, this treatment obviously increased their alternative pathway respiration and the levels of both mRNA and protein of the alternative oxidase. These results indicate that alternative oxidase is involved in the regulation of growth, development, and resistance to oxidative stress of S. sclerotiorum.
Journal of Proteome Research | 2013
Lu Gan; Chunyu Zhang; Xiaodong Wang; Hao Wang; Yan Long; Yongtai Yin; Dianrong Li; Jianhua Tian; Zai-yun Li; Zhiwei Lin; Longjiang Yu; Maoteng Li
Ultrastructural observations, combined with proteomic and comparative genomic analyses, were applied to interpret the differences in protein composition and oil-body characteristics of mature seed of two Brassica napus lines with high and low oil contents of 55.19% and 36.49%, respectively. The results showed that oil bodies were arranged much closer in the high than in the low oil content line, and differences in cell size and thickness of cell walls were also observed. There were 119 and 32 differentially expressed proteins (DEPs) of total and oil-body proteins identified. The 119 DEPs of total protein were mainly involved in the oil-related, dehydration-related, storage and defense/disease, and some of these may be related to oil formation. The DEPs involved with dehydration-related were both detected in total and oil-body proteins for high and low oil lines and may be correlated with the number and size of oil bodies in the different lines. Some genes that corresponded to DEPs were confirmed by quantitative trait loci (QTL) mapping analysis for oil content. The results revealed that some candidate genes deduced from DEPs were located in the confidence intervals of QTL for oil content. Finally, the function of one gene that coded storage protein was verified by using a collection of Arabidopsis lines that can conditionally express the full length cDNA from developing seeds of B. napus.
Biotechnology Letters | 2011
Jianmin Liu; Dianrong Li; Yongtai Yin; Hao Wang; Maoteng Li; Longjiang Yu
The open reading frame of the Δ6-desaturase gene was isolated from Mortierella alpina W15 and the gene was cloned into a pPIC3.5K vector. The vector was transformed into Pichia pastoris GS115 and expression was induced with methanol. The Δ6-desaturase expressed in P. pastoris GS115 catalyzed the conversion of linoleic acid to γ-linolenic acid but not the conversion of α-linolenic acid to octadecatetraenoic acid. The results indicate that the Δ6-desaturase gene from M. alpina W15 has substrate specificity in different organisms. Phylogenetic analysis revealed that Δ6-desaturase genes can be divided into four monophyletic groups. This work paves the way for further study of the functions of Δ6-desaturase in fatty acid metabolism and its three-dimensional structure.
Journal of Microbiology | 2013
Ting Xu; Ya-Ting Wang; Wu-Sheng Liang; Fei Yao; Yonghong Li; Dianrong Li; Hao Wang; Zheng-Yi Wang
Sclerotinia sclerotiorum is a filamentous fungal pathogen that can infect many economically important crops and vegetables. Alternative oxidase is the terminal oxidase of the alternative respiratory pathway in fungal mitochondria. The function of alternative oxidase was investigated in the regulation of sensitivity of S. sclerotiorum to two commercial fungicides, azoxystrobin and procymidone which have different fungitoxic mechanisms. Two isolates of S. sclerotiorum were sensitive to both fungicides. Application of salicylhydroxamic acid, a specific inhibitor of alternative oxidase, significantly increased the values of effective concentration causing 50% mycelial growth inhibition (EC50) of azoxystrobin to both S. sclerotiorum isolates, whereas notably decreased the EC50 values of procymidone. In mycelial respiration assay azoxystrobin displayed immediate inhibitory effect on cytochrome pathway capacity, but had no immediate effect on alternative pathway capacity. In contrast, procymidone showed no immediate impact on capacities of both cytochrome and alternative pathways in the mycelia. However, alternative oxidase encoding gene (aox) transcript and protein levels, alternative respiration pathway capacity of the mycelia were obviously increased by pre-treatment for 24 h with both azoxystrobin and procymidone. These results indicate that alternative oxidase was involved in the regulation of sensitivity of S. sclerotiorum to the fungicides azoxystrobin and procymidone, and that both fungicides could affect aox gene expression and the alternative respiration pathway capacity development in mycelia of this fungal pathogen.
Frontiers in Plant Science | 2017
Jianwei Gu; Hongbo Chao; Hao Wang; Yonghong Li; Dianrong Li; Jun Xiang; Jianping Gan; Guangyuan Lu; Xuekun Zhang; Yan Long; Maoteng Li
Oil bodies (OBs) are relatively simple but very important organelles comprising a matrix of triacylglycerol (TAG) surrounded by a phospholipid monolayer embedded and covered with unique proteins. The OB structure in Brassica napus with different oil content and the relationship between the oil content and the OB structure needs to be better understood. In this paper, the characteristics of OBs in the embryo of a series of B. napus materials with different oil content ranging from 34% to over 60% were studied. The results indicated that the OB size was significantly positively correlated with the oil content but was significantly negatively correlated with the glucosinolates and the protein content. Many genes associated with TAG synthesis, OB-membrane proteins, and the cell progress regulatory pathway were identified in the confidence interval of co-located QTLs for oil content, fatty acid (FA) compositions, and protein content. Our results suggested that the morphology of OBs might be directly controlled by the genes associated with OB-membrane proteins and indirectly controlled by the genes associated with TAG synthesis and cell progress regulatory pathway.
Plant Science | 2018
Weiguo Zhao; Dianrong Li; Hongbo Chao; Xiaoping Zhao; Na Ta; Yonghong Li; Zhoubo Guan; Liangxing Guo; Lina Zhang; Shisheng Li; Hao Wang; Maoteng Li
Flowering time is an important agronomic trait that is highly influenced by the environment. To elucidate the genetic mechanism of flowering time in rapeseed (Brassica napus L.), a genome-wide QTL analysis was performed in a doubled haploid population grown in winter, semi-winter and spring ecological conditions. Fifty-five consensus QTLs were identified after combining phenotype and genomic data, including 12 environment-stable QTLs and 43 environment-specific QTLs. Importantly, six major QTLs for flowering time were identified, of which two were considered environment-specific QTLs in spring ecological condition and four were considered environment-stable QTLs in winter and semi-winter ecological conditions. Through QTL comparison, 18 QTLs were colocalized with QTLs from six other published studies. Combining the candidate genes with their functional annotation, in 49 of 55 consensus QTLs, 151 candidate genes in B. napus corresponding to 95 homologous genes in Arabidopsis thaliana related to flowering were identified, including BnaC03g32910D (CO), BnaA02g12130D (FT) and BnaA03g13630D (FLC). Most of the candidate genes were involved in different flowering regulatory pathways. Based on re-sequencing and differences in sequence annotation between the two parents, we found that regions containing some candidate genes have numerous non-frameshift InDels and many non- synonymous mutations, which might directly lead to gene functional variation. Flowering time was negativly correlated with seed yield and thousand seed weight based on a QTL comparison of flowering time and seed yield traits, which has implications in breeding new early-maturing varieties of B. napus. Moreover, a putative flowering regulatory network was constructed, including the photoperiod, circadian clock, vernalization, autonomous and gibberellin pathways. Multiple copies of genes led to functional difference among the different copies of homologous genes, which also increased the complexity of the flowering regulatory networks. Taken together, the present results not only provide new insights into the genetic regulatory network underlying the control of flowering time but also improve our understanding of flowering time regulatory pathways in rapeseed.
Zeitschrift für Naturforschung C | 2010
Jianmin Liu; Maoteng Li; Hao Wang; Longjiang Yu; Dianrong Li
Polima and Shaan 2A are the two most widely used forms of cytoplasmic male sterility (CMS) in the utilization of heterosis of rapeseed (Brassica napus) in China. A previous study indicated that the mitochondrial gene, orf224, was the only gene with a differential expression pattern among the normal, sterile and fertility-restored lines in rapeseed. DNA sequences of orf224, including coding sequences from Shaan 2A and Polima CMS, were then amplified and analyzed. DNA sequence alignment indicated both the coding sequences were 675 bp in length and had 99.9 and 99% homology in nucleotides and amino acids, respectively, and shared certain similarity to homologues from other Brassica spp. and Arabidopsis thaliana. The probable promoter regions of orf224 were conserved between B. napus and A. thaliana, but the upstream regions of probable promoter regions were completely divergent from each other. Additionally, analysis of the primary and secondary structure of the proteins encoded by orf224 from the two lines predicted that the proteins contain a α-helix, extended strand, and random coil. After cloning a in vitro experiment showed that these two proteins could be expressed in Escherichia coli BL21.
African Journal of Biotechnology | 2009
Jianmin Liu; Hao Wang; Longjiang Yu; Dianrong Li; Maoteng Li
Hybridization between white flowered Brassica carinata and yellow flowered B. rapa were made, and the flower chimeras were observed in a few hybrids. The simple single sequence molecular markers verified the hybridity of those hybrids. Chimeras were justified and totally classified based on the morphological characteristics of the flower petals that appeared in the hybrids of B. carinata and B. rapa. Two kinds of flower chimeras were observed: one type was different flower petals were with different colour in one branch; another type was that yellow petals were with white variegations, but the variegation size and shape were different in different petals. The meiosis and mitosis analysis showed that the partial or complete separation of parental genomes inferred to occur in pollen mother cells, shoot and early-developed petals in the flower chimeral hybrids, which hinted that the occurrence of complete or partial segregation of parental genomes in the somatic cells might be the reason for the production of flower chimera in the hybrids of B. carinata and B. rapa.
Archive | 2012
Dianrong Li; Jianhua Tian; Wenjie Chen; Wenxue Zhang; Yonghong Li; Hao Wang