Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diby Paul is active.

Publication


Featured researches published by Diby Paul.


Journal of Basic Microbiology | 2008

Stress adaptations in a Plant Growth Promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils.

Diby Paul; Sudha Nair

The costs associated with soil salinity are potentially enormous and the effects of salinity may impact heavily on agriculture, biodiversity and the environment. As the saline areas under agriculture are increasing every year across the globe, it is of much public concern. Agricultural crops and soil microorganisms are affected with salinity. As Plant Growth Promoting Rhizobacteria (PGPR) have been reported to be contributing to the plant health, the osmotolerance mechanisms of these PGPRs are of importance. Pseudomonas fluorescens MSP‐393 is a proven biocontrol agent for many of the crops grown in saline soils of coastal ecosystem. Studies revealed that the root colonization potential of the strain was not hampered with higher salinity in soil. As a means of salt tolerance, the strain de novo ‐synthesized, the osmolytes, Ala, Gly, Glu, Ser, Thr, and Asp in their cytosol. To understand the mechanism of salt tolerance, the proteome analysis of the bacteria was carried out employing 2D gel electrophoresis and MALDI‐TOF. Peptide mass fingerprinting and in silico investigation revealed the up regulation of many of salt regulated proteins. It could be ascertained that the osmotolerance mechanisms of MSP‐393 viz. de novo synthesis of osmolytes and over production of salt stress proteins effectively nullified the detrimental effects of high osmolarity. MSP‐393 could serve as a suitable bioinoculant for crops grown in saline soils. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)


Biofouling | 2010

Vanillin, a potential agent to prevent biofouling of reverse osmosis membrane

Sajeesh Kappachery; Diby Paul; Jeyong Yoon; Ji Hyang Kweon

Reverse osmosis (RO) membrane systems are widely used in water purification plants. Reduction in plant performance due to biofilm formation over the membrane is an inherent problem. As quorum sensing (QS) mechanisms of microorganisms have been reported to be involved in the formation of biofilm, ways are sought for quorum quenching (QQ) and thereby prevention of biofilm formation. In this study using a chemostat culture run for seven days in a CDC reactor it was found that a natural QQ compound, vanillin considerably suppressed bacterial biofilm formation on RO membrane. There was 97% reduction in biofilm surface coverage, when grown in the presence of vanillin. Similarly, the average thickness, total biomass and the total protein content of the biofilm that formed in the presence of vanillin were significantly less than that of the control. However vanillin had no effect on 1-day old pre-formed biofilm.


International Journal of Biological Sciences | 2014

Quorum quenching mediated approaches for control of membrane biofouling.

Harshad Lade; Diby Paul; Ji Hyang Kweon

Membrane biofouling is widely acknowledged as the most frequent adverse event in wastewater treatment systems resulting in significant loss of treatment efficiency and economy. Different strategies including physical cleaning and use of antimicrobial chemicals or antibiotics have been tried for reducing membrane biofouling. Such traditional practices are aimed to eradicate biofilms or kill the bacteria involved, but the greater efficacy in membrane performance would be achieved by inhibiting biofouling without interfering with bacterial growth. As a result, the search for environmental friendly non-antibiotic antifouling strategies has received much greater attention among scientific community. The use of quorum quenching natural compounds and enzymes will be a potential approach for control of membrane biofouling. This approach has previously proven useful in diseases and membrane biofouling control by triggering the expression of desired phenotypes. In view of this, the present review is provided to give the updated information on quorum quenching compounds and elucidate the significance of quorum sensing inhibition in control of membrane biofouling.


Brazilian Journal of Microbiology | 2010

2(5H)-Furanone: A Prospective strategy for biofouling-control in membrane biofilm bacteria by quorum sensing inhibition.

Kannan Ponnusamy; Diby Paul; Young-Sam Kim; Ji Hyang Kweon

Biofouling of membranes demands costly periodic cleaning and membrane replacement. A sustainable and environmentally friendly solution for maintenance is not available and would be of great interest for many purposes including economical. As complex biofilm formation by environmental strains is the major cause of biofouling and biofilm formation in most cases are controlled by N-Acylhomoserine lactone (AHL)mediated Quorum Sensing (QS). An effort was made to understand the appropriateness of 2(5H)-furanone, to use against biofouling of membranes. QS inhibition activity by 2(5H)-furanone was studied using bioindicator strains and known AHLs of different acyl chain lengths. The biofilm inhibition was studied by growth analysis on polystyrene plate of Aeromonas hyrdrophila, an environmental biofilm strain isolated from a bio-fouled reverse osmosis (RO) membrane. Results showed a QS inhibition activity against a wide range of AHLs and also biofilm formation by 2(5H)-furanone, which is believed to act as a potential quorum inhibition agent in a bacterial biofilm community.


International Journal of Molecular Sciences | 2014

Isolation and Molecular Characterization of Biofouling Bacteria and Profiling of Quorum Sensing Signal Molecules from Membrane Bioreactor Activated Sludge

Harshad Lade; Diby Paul; Ji Hyang Kweon

The formation of biofilm in a membrane bioreactor depends on the production of various signaling molecules like N-acyl homoserine lactones (AHLs). In the present study, a total of 200 bacterial strains were isolated from membrane bioreactor activated sludge and screened for AHLs production using two biosensor systems, Chromobacterium violaceum CV026 and Agrobacterium tumefaciens A136. A correlation between AHLs production and biofilm formation has been made among screened AHLs producing strains. The 16S rRNA gene sequence analysis revealed the dominance of Aeromonas and Enterobacter sp. in AHLs production; however few a species of Serratia, Leclercia, Pseudomonas, Klebsiella, Raoultella and Citrobacter were also identified. The chromatographic characterization of sludge extract showed the presence of a broad range of quorum sensing signal molecules. Further identification of sludge AHLs by thin layer chromatography bioassay and high performance liquid chromatography confirms the presence of C4-HSL, C6-HSL, C8-HSL, 3-oxo-C8-HSL, C10-HSL, C12-HSL, 3-oxo-C12-HSL and C14-HSL. The occurrence of AHLs in sludge extract and dominance of Aeromonas and Enterobacter sp. in activated sludge suggests the key role of these bacterial strains in AHLs production and thereby membrane fouling.


Excli Journal | 2015

Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes

Harshad Lade; Avinash A. Kadam; Diby Paul; Sanjay P. Govindwar

Release of textile azo dyes to the environment is an issue of health concern while the use of microorganisms has proved to be the best option for remediation. Thus, in the present study, a bacterial consortium consisting of Providencia rettgeri strain HSL1 and Pseudomonas sp. SUK1 has been investigated for degradation and detoxification of structurally different azo dyes. The consortium showed 98-99 % decolorization of all the selected azo dyes viz. Reactive Black 5 (RB 5), Reactive Orange 16 (RO 16), Disperse Red 78 (DR 78) and Direct Red 81 (DR 81) within 12 to 30 h at 100 mg L-1 concentration at 30 ± 0.2 °C under microaerophilic, sequential aerobic/microaerophilic and microaerophilic/aerobic processes. However, decolorization under microaerophilic conditions viz. RB 5 (0.26 mM), RO 16 (0.18 mM), DR 78 (0.20 mM) and DR 81 (0.23 mM) and sequential aerobic/microaerophilic processes viz. RB 5 (0.08 mM), RO 16 (0.06 mM), DR 78 (0.07 mM) and DR 81 (0.09 mM) resulted into the formation of aromatic amines. In distinction, sequential microaerophilic/ aerobic process doesn’t show the formation of amines. Additionally, 62-72 % reduction in total organic carbon content was observed in all the dyes decolorized broths under sequential microaerophilic/aerobic processes suggesting the efficacy of method in mineralization of dyes. Notable induction within the levels of azoreductase and NADH-DCIP reductase (97 and 229 % for RB 5, 55 and 160 % for RO 16, 63 and 196 % for DR 78, 108 and 258 % for DR 81) observed under sequential microaerophilic/aerobic processes suggested their critical involvements in the initial breakdown of azo bonds, whereas, a slight increase in the levels of laccase and veratryl alcohol oxidase confirmed subsequent oxidation of formed amines. Also, the acute toxicity assay with Daphnia magna revealed the nontoxic nature of the dye-degraded metabolites under sequential microaerophilic/aerobic processes. As biodegradation under sequential microaerophilic/aerobic process completely detoxified all the selected textile azo dyes, further efforts should be made to implement such methods for large scale dye wastewater treatment technologies.


International Journal of Environmental Research and Public Health | 2015

Mineralization and Detoxification of the Carcinogenic Azo Dye Congo Red and Real Textile Effluent by a Polyurethane Foam Immobilized Microbial Consortium in an Upflow Column Bioreactor.

Harshad Lade; Sanjay P. Govindwar; Diby Paul

A microbial consortium that is able to grow in wheat bran (WB) medium and decolorize the carcinogenic azo dye Congo red (CR) was developed. The microbial consortium was immobilized on polyurethane foam (PUF). Batch studies with the PUF-immobilized microbial consortium showed complete removal of CR dye (100 mg·L−1) within 12 h at pH 7.5 and temperature 30 ± 0.2 °C under microaerophilic conditions. Additionally, 92% American Dye Manufactureing Institute (ADMI) removal for real textile effluent (RTE, 50%) was also observed within 20 h under the same conditions. An upflow column reactor containing PUF-immobilized microbial consortium achieved 99% CR dye (100 mg·L−1) and 92% ADMI removal of RTE (50%) at 35 and 20 mL·h−l flow rates, respectively. Consequent reduction in TOC (83 and 79%), COD (85 and 83%) and BOD (79 and 78%) of CR dye and RTE were also observed, which suggested mineralization. The decolorization process was traced to be enzymatic as treated samples showed significant induction of oxidoreductive enzymes. The proposed biodegradation pathway of the dye revealed the formation of lower molecular weight compounds. Toxicity studies with a plant bioassay and acute tests indicated that the PUF-immobilized microbial consortium favors detoxification of the dye and textile effluents.


BioMed Research International | 2014

N-Acyl Homoserine Lactone-Mediated Quorum Sensing with Special Reference to Use of Quorum Quenching Bacteria in Membrane Biofouling Control

Harshad Lade; Diby Paul; Ji Hyang Kweon

Membrane biofouling remains a severe problem to be addressed in wastewater treatment systems affecting reactor performance and economy. The finding that many wastewater bacteria rely on N-acyl homoserine lactone-mediated quorum sensing to synchronize their activities essential for biofilm formations; the quenching bacterial quorum sensing suggests a promising approach for control of membrane biofouling. A variety of quorum quenching compounds of both synthetic and natural origin have been identified and found effective in inhibition of membrane biofouling with much less environmental impact than traditional antimicrobials. Work over the past few years has demonstrated that enzymatic quorum quenching mechanisms are widely conserved in several prokaryotic organisms and can be utilized as a potent tool for inhibition of membrane biofouling. Such naturally occurring bacterial quorum quenching mechanisms also play important roles in microbe-microbe interactions and have been used to develop sustainable nonantibiotic antifouling strategies. Advances in membrane fabrication and bacteria entrapment techniques have allowed the implication of such quorum quenching bacteria for better design of membrane bioreactor with improved antibiofouling efficacies. In view of this, the present paper is designed to review and discuss the recent developments in control of membrane biofouling with special emphasis on quorum quenching bacteria that are applied in membrane bioreactors.


Journal of Basic Microbiology | 2013

Osmotic stress adaptations in rhizobacteria

Diby Paul

Rhizobacteria have been reported to be beneficial to the plants in many different ways. Increasing salinity in the coastal agricultural zones has been shown to be a threat to the plant and microbial life in the area. Exposure of microorganisms to high‐osmolality environments triggers rapid fluxes of cell water along the osmotic gradient out of the cell, thus causing a reduction in turgor and dehydration of the cytoplasm. The microorganisms have developed various adaptations to counteract the outflow of water. The first response to osmotic up shifts and the resulting efflux of cellular water is uptake of K+ and cells start to accumulate compatible solutes. Yet another mechanism is by altering the cell envelope composition resulting in changes in proteins, periplasmic glucans, and capsular, exo and lipopolysaccharides. Bacteria also initiate a program of gene expression in response to osmotic stress by high NaCl concentrations, which are manifested as a set of proteins produced in increased amounts in response to the stress. Genomics, transcriptomics and proteomics approaches have revealed the key components in molecular basis of bacteria salt adaptation. Understanding the mechanisms of osmo‐adaptation in rhizobacteria would also be relevant from an ecological and an applicative point of view.


Sensors | 2013

Identification of Volatiles Produced by Cladosporium cladosporioides CL-1, a Fungal Biocontrol Agent That Promotes Plant Growth

Diby Paul; Kyung Seok Park

Certain microbial Volatile Organic Compounds (VOCs) have been reported to enhance the growth and development of plants. The biocontrol fungi, Cladosporium cladosporioides CL-1 significantly improved the growth of tobacco seedlings in vitro when they were co-cultivated without physical contact. SPME Quadrupole GC/MS/MS revealed that CL-1 emited the volatiles α-pinene, (−)-trans-caryophyllene, tetrahydro-2,2,5,5-tetramethylfuran, dehydroaromadendrene, and (+)-sativene. Potential roles of these volatiles in plant growth and development are discussed. Even though there were several fungal VOCs reported in the past that could influence plant growth, their exact mechanisms of action are not fully known. Fungal VOC-mediated plant growth promotion requires in-depth study in order for this technology to be used in large scale for crops, especially those grown under greenhouse conditions.

Collaboration


Dive into the Diby Paul's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. Arthanareeswaran

National Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manish Kumar

Amity Institute of Biotechnology

View shared research outputs
Researchain Logo
Decentralizing Knowledge